Archeology (Groups 12 and 15) where there is a note recording the finding of mesolithic and neolithic worked flints in the cemetery at Warblington (SU 729054).

Site I. Foreshore between Coniglar Point (near Warblington church) and the mouth of the More Hithe stream at Ramsworth (SU 736051 to SU 739053). This piece of coastline is sheltered by Coniglar Point and a considerable width of saltings. Worked flints, derived from loam overlying the low bank of Coombe-rock at the back of the beach, occur all along the foreshore, on the beach, above and below high water mark. The loamy soil (alluvium) rests on Coombe-rock which overlies clay. The Coombe-rock contains angular chalk rubble and flints, mostly stained orange-buff, which show no sign of human flaking with the exception of one triangular flake found on the beach. All the other artefacts found on the beach, totalling about one hundred, are of glossy black flint. The majority are struck flakes, some of which show signs of utilisation, but there are also some implements, including one tiny round scraper, one end scraper on a flake, one hollow scraper, one small ovate implement faceted on both faces, struck from a flake, and one heavy flake implement (Fig. 1).

To me the artefacts have a neolithic 'look' but there is nothing definitive to confirm this tentative dating. Several cores were found and some flakes were fire-cracked.

Site II. Foreshore beach west of Warblington Quay (SU 722052).

This site is exposed to west winds and to wave action. There is considerable erosion of the low bank and very little in the way of saltings. Consequently, the worked flints which occur on this beach are battered and worn, presumably after being washed out of the low bank which again consists of loam overlying Coombe-rock and clay. The only implement I found here was a rough side-scraper worked on a flake.

November 1983


This is the published version of an undergraduate dissertation, composed with inherently limited time and resources which were unfortunately inadequate for the ambitious scope of the selected topic. The author proposes a model for mesolithic and, to a lesser extent, late-glacial and early neolithic settlement in the Cambridge region based on a reconstruction of contemporary toponymy, vegetation and fauna. Such reconstructions are always problematical; this one is particularly so because a large part of the study area consists of fenland within which the pace and scale of post-glacial topographical change have been greater than in most of Britain and within which much palaeoenvironmental research has been carried out, the results of which cannot be hastily mastered. Not surprisingly, the settlement model is insecurely in an under-researched landscape. The drainage pattern shown on the distribution and site catchment maps is that published by Fox in 1923, although this was already modified by field study of extinct water-courses in the 1930's and can be further re-drawn in the light of the accumulating evidence of aerial photography and field survey. More misleadingly, fen peat is shown at its modern extent: for the entire period of study. There is indeed, as Tilley points out, evidence for Boreal peat formation in parts of the area, but he neglects to note that it is confined to river channels and other particularly wet and low-lying locations. The evidence of stratigraphy, radiocarbon dating and pollen analysis consistently indicates that large-scale peat growth did not begin in the southern fens until the early third millennium BC.

In these circumstances, Tilley's estimation of the importance of fenland resources like rhizomes, fish, seals, wildfowl and beaver in the
local mesolithic economy becomes questionable. Doubt must equally be cast on his conclusion that a concentration of mesolithic sites and finds along the present fen edge ecotone reflects deliberate siting of settlements to exploit both upland and fenland resources. The frequency of mesolithic sites in the zone may simply result from their former preservation by peat growth and recent exposure by peat wastage.

Artefacts, the assessment and location of which form the second support on which Tilley's settlement model rests, receive scant attention. Excavated assemblages and surface collections, many of these otherwise unpublished, are summarily described, and stray finds figure on distribution maps, but no objects are illustrated. It is thus almost impossible for the reader to form a clear impression of the material involved or to make an independent assessment of it. A note to the effect that tranchet axes were probably not used as exchange items reads strangely in view of their demonstrable transport from flint to non-flint areas in southern England.

The study would have repaid further work. It should not, however, have been published in its present form, in which considerable powers of imagination, synthesis and argument are applied to ill-assimilated information.

Frances Healey
September 1985

SPECIAL FEATURE

LITHICS AND COMPUTERS: TOWARDS A STANDARD QUESTION LIST

by Elizabeth Healey and Jonathan Catton

Introduction

The listing which follows is a revised version of the Question Source File (henceforth QSF) used in the preliminary analysis of the Mucking, Essex, flint assemblage. The Lithic Studies Society is considering a recommendation to the DOE/Commission on Historic Buildings and Monuments that a substantially similar method become normal for the proper study of lithic assemblages, though we would wish to avoid a situation where the computer analysis becomes straight-jacketed and where further refinement is precluded. It is suggested that the Mucking QSF, which is flexible, could form the basis for further discussion and it is, therefore, being circulated to members of the Society and to other interested parties for comment before any submission is made. The revised document would also be included in the proposed "Guidelines" on lithic assemblages, currently being prepared by the Society.

The QSF has been drawn up by Jonathan Catton from information supplied by Elizabeth Healey, to cope with the analysis of over 30,000 pieces of flint found in a wide variety of contexts at Mucking. Full details of the computing methods used can be found in Catton et al (1981).

The QSF is designed to be as flexible as possible, so that it can be expanded or contracted as future circumstances dictate or other assemblages require. Apart from questions requiring numerical answers, keywords (which are very quickly memorized) are used in the answers. The code letter beneath the question number indicates the type of answer acceptable for that particular question. Thus questions signalled K (keyword) require a single answer; those with N may have more than one answer; those with X require a numerical answer; those with T (text) allow free comment (though these comments cannot be used in statistical analysis). The answer type can be altered in later editions if required. Although the question list appears long, it is not in fact complicated to use, because the answers to questions presented by the computer (or pro forma) can lead to the by-passing of subsequent questions which are irrelevant for a particular artefact type.

This is summarized in the diagrammatic view of the structure at the beginning of the QSF.

In so far as manipulation of data is concerned, it is possible to compare any variable with any other variable. Retrieval systems include programmes for totals and percentages, pie charts, histograms, graphs, digital plotting, etc. Other programmes covering specific problems and more refined statistical tests are in preparation.

Archaeological considerations

The variables selected for recording have been arrived at from experience rather than theory (after examination of many thousands of lithic artefacts from a variety of archaeological and geographical contexts over a number of years), as well as from the study of experimental knapping. The selection of variables has not been determined by traditional typologies.

It is to be hoped that the list of questions is reasonably comprehensive (though it excludes functional analysis), but at the same time it must be remembered that it has been designed to answer 'Mucking-specific' questions. This is especially true of questions of identification and raw material. However, in practice this need not present any major difficulties since the QSF is flexible; questions can be altered or expanded or contracted as circumstances demand and the type of answer (K, N, X, T) altered if necessary.