TWO EGYPTIAN FLINT KNAPPING SCENES
by S. H. Snape and J. A. Tyldeley

In an article in the Newsletter of Lithic Technology, Bruce Bradley (1972) suggested an "inductive technological sequence" for the manufacture of two types of flint implement from predynastic Egypt. He based this hypothetical manufacturing sequence on his observation of the "chronological truncations of flake scars and/or ground surfaces on the finished implement", paying special attention to what appeared to be the final shaping of the implement by pressure flaking. Evidence confirming the use of a tipped baton in the pressure flaking of flint knives in Egypt, although from a later period than those discussed by Bradley, may be found in two remarkable tomb scenes whose existence may well be unknown to many lithic specialists.

The scenes in question come from the tombs of two provincial magnates of the early Middle Kingdom (2, 2000-1900 BC) at Beni Hasan, Middle Egypt (Griffith 1896, pl. 7 and 8). A regular feature of the tombs of Egyptian nobles of this period was the depiction of scenes of daily life, including various crafts and industries. Tomb 15 depicts the work of four flint knappers, accompanied by the legend in hieroglyphic text, "striking flint/knives" (for a discussion of the various Egyptian terms for flint see Midant-Reynes 1981). These artisans appear to be completing the final stage of manufacture, holding the almost-finished implement in the left hand and pressing, rather than hitting, the flint tool with a long baton. Tomb 2 shows flint workers seated around what appears to be an anvil, again apparently putting the finishing touches to flint knives by pressure flaking. The batons in the latter tomb appear to have a separate tip of a different material, the original drawing showing a black baton with a brown end-piece.

It is not intended to suggest that the illustrations are "photographic" reproductions of flint knapping in Egypt. Stylistic licence must be taken into account, as must the artist's selection of those scenes of manufacture which, to him, best represented the activity. The fact that only the final stage of the sequence leading to the production of flint knives is depicted must not be taken to imply anything about the location or organisation of the previous stages of manufacture.

Acknowledgement
The authors are grateful to the Egypt Exploration Society for permission to publish the illustration which accompanies this article.

REFERENCES

August 1983

WORKED FLINTS FROM COASTAL SITES IN HAMPSHIRE (WARRINGTON - EMNORTH AREA)
by Ted Masson Phillips

The foreshore at the two sites described here consists of flint-gravel on top of eroded clay, or Oombe-rock. The natural beach flint is apparently derived from the erosion of the Oombe-rock and the individual flints are angular and battered, and discoloured orange-red or brown, or sometimes white. Among them, especially at site I, there are many undischoured, humanly-struck flakes of glossy black flint and a small number of definite implement types.

The only reference I have been able to find to this area occurs in the Archaeological Review for 1966 published by the Council for British
Archeology (Groups 12 and 13) where there is a note recording the finding of mesolithic and neolithic worked flints in the cemetery at Warlington (SU 729054).

Site I. Foreshore between Conigar Point (near Warlington church) and the mouth of the More River stream at Ramsworth (SU 736051 to SU 729053). This piece of coastline is sheltered by Conigar Point and a considerable width of saltings. Worked flints, derived from loam overlying the low bank of Coombe-rock at the back of the beach, occur along the fore­shore, on the beach, above and below high water mark. The loamy soil (alluvium?) rests on Coombe-rock which overlies clay. The Coombe-rock contains angular chalk rubble and flints, mostly stained orange-buff, which show no sign of human flaking, with the exception of one triangular flake found on the beach. All the other artefacts found on the beach, totalling about one hundred, are of glossy black flint. The majority are struck flakes, some of which show signs of utilisation, but there are also some implements, including one tiny round scraper, one end scraper on a flake, one hollow scraper, one small ovate implement faceted on both faces, struck from a flake, and one heavy flake implement (Fig. 1).

To me the artefacts have a mesolithic 'look' but there is nothing definitive to confirm this tentative dating. Several cores were found and some flakes were fire-cracked.

Site II. Foreshore beach west of Warlington Quay (SU 722052).

This site is exposed to west winds and to wave action. There is considerable erosion of the low bank and very little in the way of saltings. Consequently, the worked flints which occur on this beach are battered and worn, presumably after being washed out of the low bank which again consists of loam overlying Coombe-rock and clay. The only implement I found here was a rough side-scraper worked on a flake.

November 1983


This is the published version of an undergraduate dissertation, composed with inherently limited time and resources which were unfortunately inadequate for the ambitious scope of the selected topic. The author proposes a model for mesolithic and, to a lesser extent, late glacial and early neolithic settlement in the Cambridge region based on a reconstruction of contemporary topography, vegetation and fauna. Such reconstructions are always problematical; this one is particularly so because a large part of the study area consists of fenland within which the scale and scope of post-glacial topographical change have been greater than in most of Britain and within which much palaeoenvironmental research has been carried out, the results of which cannot be hastily mastered. Not surprisingly, the settlement model site insecurely in an under-researched landscape. The drainage pattern shown on the distribution and site catchment maps is that published by Fox in 1923, although this was already modified by field study of extinct watercourses in the 1930's and can be further re-drawn in the light of the accumulating evidence of aerial photography and field survey. More misleadingly, fen peat is shown at its modern extent for the entire period of study. There is indeed, as Tilley points out, evidence for Boreal peat formation in parts of the area, but he neglects to note that it is confined to river channels and other particularly wet and low-lying locations. The evidence of stratigraphy, radiocarbon dating and pollen analysis consistently indicates that large-scale peat growth did not begin in the southern fens until the early third millennium BC.

In these circumstances, Tilley's estimation of the importance of fenland resources like rhizomes, fish, eels, wildfowl and beaver in the