A New Variant on the Creswellian Angle-backed Blade

R. Jacobi and A. Roberts

During recent excavations by the British Museum at Three Holes Cave in South Devon (Roberts 1992) a curved backed blade with a distal oblique truncation (Fig 1) was found stratified in an in situ Late Upper Palaeolithic hearth deposit located just outside the cave entrance. The object forms part of a small undisturbed lithic assemblage of Creswellian-type which appears to date to the early part of the Lateglacial Interstadial c. 12,500-12,000 BP on the basis of a series of unpublished AMS dates by the Oxford radiocarbon accelerator on humanly modified faunal remains.

The object is distinct from the large curved backed pieces of Azilian affinities found at several British Late Upper Palaeolithic sites, and tends to a pseudo-trapeziform outline. Since then other examples of similar curved and angle-backed pieces have been identified from several Creswellian sites in Britain (Table 1). We will argue that this tool-type is part of a continuum of forms of obliquely truncated and backed blades, including both Creswell and Cheddar points (sensu Bohmers 1956, 11), which are characteristic of the British Creswellian.

Figure 1: Curved and angle-backed point from Three Holes Cave, Devon. Illustration by Karen Hughes.
Bohmers’ analysis can now be shown to have been flawed by problems with sample integrity for both of the assemblages upon which his comparison was based (Jacobi 1991). In addition, researchers have long rejected the idea of separate Creswell and Cheddar cultures (e.g. Campbell 1977, Collcutt 1979). As such, the term ‘Creswelian’ has continued to be regarded as being synonymous with the British Late Upper Palaeolithic – as it was when the term was first introduced. However, recent work is showing that it should only be used with regard to a single, distinct facies of this period (Jacobi 1991; Barton 1992).

On the basis of recent excavations and careful work on old collections the British Creswellian can be seen to be characterised by a lithic assemblage containing the following tool forms: backed and truncated ‘points’ (Creswell and Cheddar points and the intermediate form as described here); end-scrapers on mainly long blanks, and often with retouch on lateral margins; burins on prepared truncations; composite tools; piercers and bees, including true zinks; worn-end blades; and ‘Magdalenian’ blades.

<table>
<thead>
<tr>
<th>Lab No.</th>
<th>Site and sample details</th>
<th>Date BP</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>OxA 3717</td>
<td>antler ‘rod’ with scooped end</td>
<td>12020 ± 100</td>
<td>(1)</td>
</tr>
<tr>
<td>OxA 3718</td>
<td>antler ‘rod’ with scooped end</td>
<td>12250 ± 90</td>
<td>(1)</td>
</tr>
<tr>
<td>OxA 2795</td>
<td>human frontal</td>
<td>11820 ± 120</td>
<td>(2)</td>
</tr>
<tr>
<td>OxA 2797</td>
<td>reindeer antler bistone</td>
<td>11870 ± 110</td>
<td>(2)</td>
</tr>
<tr>
<td>OxA 1071</td>
<td>cut bovine phalange</td>
<td>12200 ± 160</td>
<td>(3)</td>
</tr>
<tr>
<td>BM 2183R</td>
<td>cut horse atlas</td>
<td>12350 ± 160</td>
<td>(4)</td>
</tr>
<tr>
<td>OxA 2968</td>
<td>same as BM 2183R</td>
<td>12340 ± 150</td>
<td>(5)</td>
</tr>
<tr>
<td>OxA 2969</td>
<td>cut horse phalange</td>
<td>12470 ± 150</td>
<td>(5)</td>
</tr>
<tr>
<td>OxA 2976</td>
<td>cut horse metopidal</td>
<td>12360 ± 170</td>
<td>(6)</td>
</tr>
<tr>
<td>OxA 2959</td>
<td>human calotte</td>
<td>12380 ± 110</td>
<td>(2)</td>
</tr>
<tr>
<td>OxA 2964</td>
<td>cut horse metopidal</td>
<td>12470 ± 160</td>
<td>(6)</td>
</tr>
<tr>
<td>OxA 2966</td>
<td>cut red deer metopidal</td>
<td>12800 ± 170</td>
<td>(6)</td>
</tr>
</tbody>
</table>

Table 2: Radiocarbon dates for human fossils and humanly modified bone or antler from sites in Britain with curved and angle-backed points.
The assemblages are also characterised by the use of the *en éperon* technique of platform preparation in blade manufacture (Barton 1991), and by the apparent dominance of single-platform blade cores. Recent excavations and the processing of residues down to 500 microns from Creswellian contexts at both Three Holes Cave and Gough’s Cave have failed to reveal any contemporary microlithic component. These sites are often associated with a predated fauna consisting of horse, red deer and mountain hare. Occasionally they contain bone, antler and ivory artefacts including double bevelled points, eyed bone needles and hare tibia awls. Recent radiocarbon dates from human fossils or humanly-modified material from Creswellian sites suggests that these assemblages have a restricted time range during the early part of the Late Glacial Interstadial c. 13000-12000 BP (Table 2; Jacobi 1991; Barton 1992).

Although the best evidence for the Creswellian comes from recent work in Southwestern Britain (Devon and Cheddar Gorge), and there are serious contextual problems still associated with the assemblages recovered from Creswell Crags, the historical term is retained for purposes of simplicity. A thorough new definition of the Creswellian and its place in the British Late Upper Palaeolithic is currently in preparation by the authors.

Cheddar and Creswell points

Although Bohmers’ (1956) proposed division of the British Late Upper Palaeolithic into two geographically separate cultures was not accepted, his terms for the two characteristic backed tool types (Ibid. 11) have persisted. Cheddar points possess a trapezoidal silhouette partly defined by a pair of divergent and rectilinear oblique truncations. Creswell points again tend to a trapezoidal outline, but possess only a single rectilinear truncation oblique to the longitudinal axis.

For both point types the shorter lateral margin is sometimes wholly, and sometimes only partially, retouched. Where this retouch is only partial, its contact with the unmodified portion may form a shoulder. When it does so, the piece becomes a ‘shouldered point’. Since, however, there is every gradation from un-shouldered to clearly shouldered this terminological distinction is probably not a particularly useful one.

Both tool-types frequently occur together on British sites and, where they do, points with a pair of oblique truncations consistently out-number those with only a single such truncation. Recent refitting work has also demonstrated that many of the fragments previously classified as Creswell points are in fact parts of objects with a pair of divergent truncations - i.e. Cheddar points (Jacobi 1991).

The use-damage present on both Creswell and Cheddar points indicates that they were most likely to have been mounted as side-blades rather than the traditional interpretation of their being projectile tips (Jacobi 1991). Where unambiguous damage is present, it takes the form of splintering (often bifacial) and half-moon breaks along the longer and unmodified lateral margin (e.g. Campbell 1977, fig 129, no.8, from Tornewton Cave, Devon). This sort of damage suggesting that the unmodified edge was the one which had been used has been noted on artefacts from Kent’s Cavern (Devon), Gough’s Cave (Somerset), King Arthur’s Cave (Hereford and Worcester), Mother Grundy’s Parlour (Derbyshire) and Robin Hood Cave (Derbyshire). Many pieces also show less marked damage on the unmodified edge which could result from use. While some points possess small snaps or narrow burin-like removals originating from their obliquely truncated tips, they do not show the range of breaks regarded as typical of impact damage on weapon heads (Barton and Bergman 1982; Fisher et al. 1984). That so many Creswell and Cheddar points are distinctly curved in longitudinal profile would also make them unsatisfactory as weapon-heads. These observations suggest that rather than being ‘points’ or tip-pieces, many (if not the majority) were hafted as ‘side-blades’. Their unretouched longer margins would, of course, be well-adapted to cutting or slicing.

The curved and angle-backed points, such as the one from Three Holes Cave, have so many similarities with Cheddar and Creswell points that they are considered another variant of the same tool form. The basic dimensions and thickness of all three variants are equivalent, and all tend to be made on blanks apparently struck from single platform cores. Backing is usually unidirectional. The basic outline approaches being trapeziform. The curved and angle-backed form also shows a continuum of ‘shouldering’ on the modified edge. As well as the morphological similarities, all three forms show the same damage patterns and were presumably used in the same manner and for the same purpose(s). Finally, all three are found together in Creswellian assemblages throughout Britain.

We would argue, therefore, that the curved and angle-backed points represent a midway in a continuum of forms of backed and truncated side-hafted blades for which the two extremes are the classic Creswell and Cheddar points. It is probable that all of these forms served the same role in the Creswellian tool-kit, and the differing morphologies have more to do with expediencies of hafting and original blank form rather than any inherently meaningful stylistic or functional differences.

Despite reservations about the functionally implicit terminology and while recognising a continuum of forms within the tool-type, we believe that the terms Cheddar and Creswell ‘point’ should be retained in the interests of academic continuity and textual brevity to refer to the double and single truncated forms of the Creswellian backed ‘side-blades’ respectively. The terminology for the curved and angle-backed points presents a problem as they are seen as a mid-point in a continuum of forms between the two defined types. We suggest that they be referred to by the descriptive name
used in this article (‘Creswellian curved and angle-backed points’) rather than propose a confusing new name for the form.

Acknowledgements

We would like to thank Karen Hughes for the illustration of the ‘Cheddar Point’ from Three Holes Cave. Alison Roberts would like to thank Mr and Mrs W.F. Stark and English Nature for permitting the work in the Torbryan Valley, and the trustees of the British Museum for providing funding. Roger Jacobi would like to thank Cheddar Showcaves for permission to excavate at Gough’s Cave, and the staff and trustees of the Natural History Museum for their collaboration and support. We would also like to thank Rupert Housley and the Oxford Radiocarbon Accelerator Unit for the dates which are allowing the reassessment and reinterpretation of the Creswellian. Likewise, we are grateful to the staff of the British, Natural History, Torquay, Woodspring and Cheddar Caves Museums for access to collections.

References

1 Department of Archaeology, University of Nottingham, University Park, Nottingham.