Further Comment on the Islay Handaxe.

Phil Harding

I am writing with information which should clarify the unresolved issue in the article published in Lithics 13, 'A Lower Palaeolithic Handaxe from Scotland' (Mithen, Finlayson and Finlay 1992). This article was unable to provide a firm explanation for the presence of the object on Islay. Following a discussion with Dr S Mithen, I was asked by Dr J Wymer to investigate the matter for the English Rivers Palaeolithic Project.

In order to try and obtain any further information as to the provenance of the object, Mrs Margaret Perrons (Chairperson of the Islay Museum Trust) spoke to Mrs T. Crawford, widow of the donor. Mrs Crawford is certain that the implement does not come from Islay. The axe apparently formed part of a collection which was built up at Bowmore School on Islay by Mr Crawford in the 1960s. After Mr Crawford's death, it was donated to the Museum of Islay Life as a Mesolithic axe in September 1977. Regrettably the true provenance will probably never be known.

I am grateful to Mrs Perrons for her efforts on my behalf and hope that this helps to resolve the issue.

Reference


The Topknot

Lawrence Barham

Introduction

Radial flaking is one of the oldest core reduction techniques known. Radial cores occur in Bed I at Olduvai Gorge (Leakey 1971) and become common in later industries such as the African Middle Stone Age where flake production is relatively standardised (Volman 1984). The cores with their undulating bifacial profiles are distinctive as are their flakes, marked by convergent dorsal scars. This paper proposes a third identifying attribute of radial flaking, a core rejuvenation flake distinguished by its pyramidal shape and by its method of removal.

The radial rejuvenation flake was recognised in a recently excavated Middle Stone Age (MSA) assemblage from Mumbwa Caves, central Zambia (Barham 1993). Experimental knapping of vein quartz suggested an origin for the flake and its role in the process of radial flaking. The steps involved in rejuvenating a radial core add to the complexity of this ancient technology and suggest some behavioural implications which are examined below.

The Topknot

The largely quartz MSA assemblage at Mumbwa contains numerous radial cores and flakes indicative of this particular reduction strategy. Also occurring are quadrilateral flakes whose dorsal surface is pyramidal in outline and in plan view (Fig 1). The intersection of flake scars which creates the peaked shape also frequently culminates in a topknot of hinge fractures and cortex (Fig 1a,d,f,h). The frequency of hinged peaks may in part be a reflection of the unusual flaking properties of vein quartz.

Vein quartz is brittle, often contains hidden stress fractures, and varies greatly in its homogeneity within individual veins and even in the same piece of rock (Knight 1991). These factors conspire to reduce the knapper's control over the core, particularly when hard stone hammers are used (ibid., 40). Depending on the quality of the quartz, core rejuvenation may become a necessary feature of the radial reduction process.

The combination of pyramidal flakes with hinge scars in the Mumbwa sample suggested that core rejuvenation was an element of the flaking strategy and that this distinctive flake could be a clue to its frequency. To test this hypothesis, ten vein quartz cobbles were flaked radially using a quartzite hard