Caught short in Shropshire

Lawrence Barfield.

Dept. of Ancient History and Archaeology, University of Birmingham.

On Neolithic and Bronze Age sites in England we can expect flaked stone finds primarily to involve flint or, less frequently, chert. Only in Scotland, and other areas of Britain lying some distance from the Cretaceous areas of the south-east, do we find a range of other rocks was utilised (McCartan 1987). It came as a surprise, therefore, during the excavation of a Beaker settlement and burial cairn (the southern ring ditch) at Meole Brace, Shropshire, when a number of unretouched flakes and a core of locally obtained stone were recovered alongside a macro flint assemblage. Because of the lack of secondary retouch and their similarity to other cracked stones these artefacts went unrecognised during the first season of excavation.

The site, under excavation by the Birmingham University Field Archaeology Unit (BUFAU) since 1994, has now produced a complex sequence of a round house and sparse Beaker settlement débris, followed by the construction of a stone cairn, followed by turf and gravel barrow and double ring ditch construction (Hughes 1995). These structures lie on a drift deposit of gravel containing a varied range of pebbles and boulders representing a wide cross-section of the geology of the north Welsh Marches, North Wales, and perhaps areas further afield. Some of the harder and finer grained rocks, capable of conchoidal fracturing and taking a sharp edge, had been selected from this deposit for the production of flakes. These show clear bulbs of percussion and in two cases the presence of striking platforms and sequential working in a consistent direction on the dorsal surface (Fig. 1, 1 and 2). One core, which had later been used as a boulder in the construction of the cairn, was also recovered (Fig. 1, 3). This had several flakes removed from a flat, natural facet of the cobble which served as the striking platform.

There were also several flakes which had been struck straight from the edge of pebbles and which, although they have clear bulbs of percussion, have no prepared platforms (Fig. 1, 4). It is impossible to say in these cases whether or not they were the result of intentional or accidental striking. But the likelihood that they are deliberate is high. The rock used, and indeed the flakes themselves, bear a close resemblance to detritus from one production site. However, it was clear that each of the Meole Brace pieces was of a different kind of rock and petrographical analysis of two of the pieces (Fig. 1, 3 and 4), by R. A. Isar of Birmingham University, showed them to be respectively a fine-grained meta-siltstone and an altered alkali dolerite, not belonging to any established axe group. We can thus assume that they were obtained from local drift deposits.

Shropshire lies a long way from sources of good quality and abundant flint. The flint tools from the site are not numerous and have been universally obtained from small pebbles of secondary and non-local origin, possibly from somewhere in the central Midlands. There is also a high ratio of retouched to unretouched pieces, a characteristic of other sites in the Welsh borderland (Green 1986). Local rocks had thus clearly been used opportunistically and expediency to supplement the scarce flint.

Figure 1. Meole Brace, Southern Ring Ditch, Salop. Flaked rock from Beaker contexts.
supply, especially when cutting edges, larger than those provided by the small flint flakes, were needed.

From the same site came numerous flakes of similar rocks, which had been broken presumably by heat action, since they were especially concentrated in areas of cremation deposits. These clearly do not represent deliberate flake production but, as their edges were sometimes as sharp as the struck flakes, these could also have been used as tools along with other broken stones.

The Medele Brace flints are certainly Beaker in date, being stratified both in the burial and below it. How far they reflect the breakdown of established networks of raw material exchange on the introduction of metallurgy and how far they are a common-sense answer to local material scarcity is difficult to say. It would be interesting to see whether such an use of non-flint sources in the area occurs in other periods of prehistory. It is important to stress that such flakes and coves can easily be missed, especially by excavators who are programmed to look out only for flint, and I encourage everyone to be attentive to the presence of these alternative types of raw material on their sites.

Other strategies employed to compensate for the shortage of flint in the West Midlands and neighbouring areas of Wales are somewhat better known. These include the cannibalisation of flint axes and the recycling of older struck flakes. The use of broken axes as a source material is well known and recently finds of this practice come from a number of sites in the area, dating from the later Neolithic to Beaker times. These include Trellystan, Powys (Britnell 1982), Aldington, Coleshill, Abbey Farm and Wolvery, in Warwickshire, and Raceker in Staffs. (Barfield forthcoming A). Three flakes from an axe at Lockington, Leics., show a similar reuse of greenstone axes (Young and Bevan forthcoming). The recovery of flakes from older periods of prehistory is another well established tactic. At Burton Dassett, Wars., an old patinated flake was used to produce a tanged arrowhead, evidence of the scarcity of good quality raw material in the Bronze Age (Barfield forthcoming B).

References


