CONCLUSIONS AND THE WAY FORWARD

Philippa Bradley

The day meeting provided interesting papers containing many stimulating ideas that covered many aspects of the location, recovery and interpretation of lithic scatters. The problems encountered when looking at scatters sealed under alluvium or colluvium proved to be a recurrent theme. The initial planning process, subsequent role of curatorial staff and uses of sources of data such as Sites and Monuments Records (SMRs) were all explored in papers with examples from Cambridgeshire and the Lithic Scatters Project (Louise Austin, Bob Sydes, Susan Lisk, Jon Humble and John Schofield). Tim Allen and Gill Hey examined large-scale evaluations in detail; exploring the approaches that can be used when trying to understand landscapes and lithic scatters. These contributions show the diversity of occupation through the Neolithic and Bronze Age on the floodplain of the Thames Valley. Tim Allen has dealt eloquently with the many practical problems of dealing with thousands of flint artefacts in the field; Bradley described subsequent problems of processing and assessing such large assemblages and those at the other end of the scale, the small, undiagnostic ones. At the smaller end of the scale Daryl Garton looked in detail at a settlement, the well-preserved site at Lismore Fields. Here a fairly large in situ excavated flint scatter was analysed to show what the outcomes might have been had the site been subjected to either test-pit sieving or fieldwalking before the evaluation. This was a particularly illuminating paper that stressed the importance of the local context for evaluations. Another paper presented on the day by Jon Humble explored the implications for the use of surface collection as a predictive tool with reference to his work at Cotton henge, Northamptonshire. The successes and failures of field and analytical methodologies were reviewed.

Many authors have discussed other considerations in the field concerning the recovery of lithics within alluvium and colluvium. The evaluations at Purfleet have provided spectacular results and the designing of a suitable recovery method for deeply buried Palaeolithic lithics is of great significance. The challenge now for Palaeolithic archaeology and evaluation techniques will be the development of these recovery techniques to allow much greater stratigraphic control to enable the lithics to be better differentiated (cf Bates et al., this volume).

Distributions of lithics across landscapes have been studied for a great number of years, chiefly as the end product of fieldwalking or test-pit sieving, and much pioneering work has been published (e.g East Hampshire Survey: Shennan 1985; East Berkshire Survey: Ford; Vale of White Horse Survey: Tingle 1991; Fenland Survey: Hall 1981; 1987; 1992; Lane 1993; Silvester 1991; Stonehenge Environs Project: Richards 1990). At Yarnoton and Eton such initial recovery methods have been used in conjunction with evaluation trenches, test-pitting and subsequently area excavations. The distribution of worked flint across the landscape has been tied into past topographies allowing an understanding of that landscape through time and space to emerge. At Eton the careful recovery of midden deposits will enable earlier Neolithic flintworking to be examined in detail out of the context of causewayed enclosures, or isolated pit deposits. The vast midden deposits found on this site provide an insight into Neolithic 'open settlements' on an unparalleled scale. The scale of the deposits and its associated artefact and ecofact assemblages, including earlier Neolithic pottery, animal bone and other occupation debris, makes this an extremely exciting opportunity.

Many of the contributions provided practical solutions to the problems of location, identification and interpretation of lithic scatters. Some of the techniques are innovative and should be adopted widely; others are now well-established methods of evaluation that will continue to be used in the future. One of the themes that was brought out by the meeting and this volume is that evaluations need a staged and frequently a multi-disciplinary approach using combinations of fieldwalking, test-pit sieving, geophysical survey and evaluation trenches together with good initial desktop assessments. If applicable, specialist input on site even at the evaluation level can be crucial. At present spot dating may be carried out as fieldwork progresses and specialists may visit the site, but the use of specialists on site to produce an integrated approach does not very often occur. It should also be recognised that not all archaeological organisations employ lithic specialists and may not have access to specialist advice during the course of the evaluation. Specialists from other disciplines such as geomorphology, sedimentology and geology similarly may only visit the site a few times but a more integrated approach may prove to be very fruitful.

A joint venture between the Oxford Archaeological Unit and Wessex Archaeology (Framework Archaeology) will adopt such an integrated approach using finds, environmental, computing and other specialists on site during the course of the evaluation. The results will be fed back to the excavation teams daily, thus informing strategic decisions and allowing much of the initial specialist processing (ie initial recording) of finds
to be undertaken in the field. This has implications for the writing of assessments, allowing a great deal of the work to be carried out in the field. This would also allow problematic contexts to be checked, rather than merely relying on the written and drawn record. This approach to evaluation is innovative and is an exciting departure; however, it is worth stressing it is only really feasible for the larger projects. There may be initial technical difficulties using this type of approach but it is hoped that these can be overcome and that the results will outweigh any initial problems encountered. Developments in computing have greatly enhanced the manipulation and analysis of large lithic assemblages. Geographical Information Systems (GIS) have also aided the analytical and interpretative process. The application of GIS to lithic scatters has recently been applied to Mesolithic material from the Pennines (Spikins 1995, 99 fig. 2) with some interesting results. Using such an approach lithics can be viewed on three levels (i individual scatter; ii the landscape scale; iii countrywide scale) (Spikins 1995, 102). The ability to identify artefacts on site and plot them against the site data during the evaluation has great potential for on site interpretation and may also aid the strategic decision-making process.

The quality and quantity of data being recovered from recent evaluations is astonishing; many of the results presented here will produce new thoughts and interpretations of, for example, floodplain archaeology. A serious ethical question also needs to be addressed in that frequently evaluations produce results which prevent the site from being developed and the remains are preserved in situ, however, often these important results are not published but merely lodged in SMRs. Sometimes due to sensitive development proposals results may not even be lodged in SMRs for a considerable period after the evaluation (cf. Darvill et al. 1995, 39). As Darvill et al. (1995, 39) discuss, publication of evaluations is often limited to summaries in CBA regional volumes, the organisation’s Annual Report or possibly a brief summary in a local journal. Even if these sites are being published at the local level the nature of evaluations means that they are difficult to interpret and may not be representative of the site as a whole. Similarly artefacts and ecofacts recovered may not be representative. A wider assessment of the impact of evaluations could usefully be undertaken to collate the results from recent work and disseminate them.

The establishment of research priorities and guidelines for the recording of lithics would be an invaluable step towards providing comparability between lithic reports and would set minimum standards for such reports. It would also provide new directions and focus lithic analysis, building on the pioneering work of the past, but allowing the discipline to move forward rather than stagnate. Such a project is currently awaiting English Heritage funding (Healy and Bradley 1997). The eventual production of a glossary for the description of flint artefacts (Healey forthcoming) will also go some way to providing standard terms and coupled with the guidelines for recording lithics will bring the discipline into line with other special interest groups (for example, prehistoric ceramics: Prehistoric Ceramic Research Group 1995; Roman pottery: Young 1980; Study Group for Roman Pottery 1994; Fulford and Huddleston 1991; Medieval Ceramics Group in prep.). It is a sad reflection of the discipline that in 1981 Alan Saville highlighted the need for such flint guidelines and seventeen years later lithic analysts still lacks this most basic of requirements (Saville 1981, 24).

Bibliography

Hall, D N, 1981 Cambridgeshire Fenland; an intensive archaeological fieldwork survey, in The evolution of marshland landscapes (R T Rowley ed), 52-73, Oxford
Hall, D N, 1987 Fenland Project Number 2, Fenland landscapes and settlement between Peterborough and March, East Anglian Archaeology 35
Hall, D N, 1992 Fenland Project Number 6, The South-western Cambridgeshire Fenland, East Anglian Archaeology 56
Healy, F and Bradley, P, 1997 Project outline for compilation of research priorities and guidelines for lithic analysis (Lithic Studies Society), unpublished document prepared for English Heritage
Lane, T W, 1993 The Fenland Project Number 8: Lincolnshire Survey, The Northern Fen-Edge, East Anglian Archaeology 66
Prehistoric Ceramic Research Group 1995 The study of later prehistoric pottery: General policies and guidelines for analysis and publication, PCRG Occasional Papers 1 and 2
Richards, J, 1990 Stonehenge environs project, English Heritage Archaeological Monograph 16
Saville, A, 1981 Blinkered vision, Lithics 2, 24
Shennan, S J, 1985 Experiments in the collection and analysis of archaeological survey data: The East Hampshire Survey, Sheffield University Press
Silvester, R J, 1991 The Fenland Project Number 4: the Wissey Embayment and the Fen Causeway, Norfolk, East Anglian Archaeology 52
Study Group for Roman Pottery 1994 Guidelines for the archiving of Roman pottery. Guidelines Advisory document 1
Young, C J, (ed.) 1980 Guidelines for the processing and publication of Roman pottery from excavations, London DOE Occasional Paper 4