PREHISTORIC SETTLEMENT AND NON-SETTLEMENT IN TWO SOUTHERN CAMBRIDGESHIRE RIVER VALLEYS: THE LITHIC DIMENSION AND INTERPRETATIVE DILEMMAS

Joshua Pollard,
University of Wales College, Newport, Caerleon Campus, PO Box 179, Newport, NP6 1YG

INTRODUCTION
The opportunity is taken to offer thoughts on the interpretation of surface-derived and excavated lithic evidence, through recourse to the detail of fieldwork carried out by the Cambridge Archaeological Unit on two sites in southern Cambridgeshire. Since for many regions lithics provide one of the few, if only, indications of the extent and character of Mesolithic, Neolithic and Bronze Age activity, their successful interpretation is of obvious importance. Frameworks for the interpretation of later prehistoric flint assemblages are well established, though tend to lay stress on aspects of technology, function and economy at the expense of social context; a format that is routinely and uncritically reproduced (Brown 1995). Calls have recently been made for more ambitious approaches to the embarrassing mass of lithic data (Brown 1995; Schofield 1995), a process that will require introspective examination of the theoretical positions from which fieldwork and analysis begins. Here, it is argued that the quest is not one for improved methodologies, but for critical and contextually based interpretation, which is essential if we are to develop a fuller understanding of the range of past social practices that generated the lithic record.

The first part of the paper summarises the results of developer-funded fieldwork undertaken by the Cambridge Archaeological Unit at two sites in the chalk ‘uplands’ of southern Cambridgeshire. The prehistoric archaeology of both is not exceptional, but can be used to illustrate interpretative problems common to lithic evidence in general. Working from the detail of the archaeology, in the second part of the paper a number of general concerns are voiced over the interpretation of scatter data within current ‘off-site’ and ‘non-site’ models.

EVALUATIONS, EXPECTATIONS AND EXCAVATIONS IN SOUTHERN CAMBRIDGESHIRE
The two sites, at Hinxton and Bourn Bridge, are located on gravel terraces of the Cam/Granta system to the south of Cambridge (Fig. 1). Fieldwork, leading eventually to full excavation, was instigated at both due of their location on land destined to become borrow pits for the new A11 improvement.¹ The general area is one with a visible wealth of prehistoric and later archaeology (Fox 1923; Taylor 1981). Field ditches and enclosures belonging to a Romano-British rural landscape were already known at Hinxton through cropmarks and earlier fieldwork. Prior to evaluation, no archaeology was known to exist within the limits of the proposed quarry at Bourn Bridge. However, the location of the site within a region ‘rich’ in Roman and Saxon settlement, along with its close proximity to a Bronze Age barrow cemetery (Barclay and Williams 1994) and the crossing point of two Roman roads over the Granta, led to expectations of a high archaeological potential.

Bourn Bridge
The site is located on the 1st-2nd terraces of the River Granta. A field evaluation, comprising test trenching and surface collection, was undertaken during 1993 (Evans 1994). The initial 10.2 ha extent of the borrow pit was subsequently decreased in order to avoid a zone of high archaeological sensitivity around an area of Roman settlement in the western sector. The second (final) stage of excavation, undertaken by the writer in the summer and autumn of 1994, was restricted to an area of c.6 ha encompassing the eastern half of the original planned quarry extent (Pollard 1995). Further trenching was undertaken to the south, and an open area on the low ground adjacent to the river (where the archaeological potential was identified as greatest) machine stripped. Excavation revealed evidence of intermittent settlement, agricultural and ceremonial activity dating from the later Mesolithic to the Saxon period. The low-lying floodplain zone, between 30-100 m back from the river, was covered by up to a metre of post-Saxon alluvium. Consequently, the archaeology within this zone was not evident through any surface presence such as finds scatters or cropmarks.

From the outset the prehistoric presence on the site appeared minimal, but this was to prove deceptive. Gridded fieldwalking was undertaken across the area during the evaluation (Evans 1994). This involved surface collection from twenty-nine 10 x 10 m squares on an axially staggered 50 m grid, with an additional 14 squares at 25 m intervals being walked over a 100 m wide band across the central part of the site, where it was suspected lithic densities might be higher. This provided a 4.2% sample of the area, roughly 4,300 square metres being covered in total. Lithic densities were low. Only 118 pieces of worked flint were recovered in total, with values ranging from one to nine pieces per square, and averaging only 3.2 pieces per square.
Figure 1: Bourn Bridge and Hinxton – site locations.
The distribution represented a low density scatter across most of the area, increasing to the west, and falling over the alluviated floodplain to the north and an area of earlier quarrying to the east. The picture was of a low lithic presence with only occasional rather random and square specific ‘concentrations’ of worked flint (up to only nine pieces) and burnt flint. The dual processes of alluviation and colluviation could have served to mask material over the area of the floodplain adjacent to the river. However, no concentrations of lithics or prehistoric pottery were observed during two-stage stripping of the area during the main excavation, and the impression is that this low-lying part of the site genuinely formed a blank in terms of surface lithic deposition. Informal surface collection was also undertaken throughout the evaluation and main excavation, but did not yield a significant quantity of material, suggesting that the results of the gridded collection were representative. This pattern is also supported by the distribution of material in derived contexts in the fills of Romano-Saxon features (Fig. 2).

Assessment of the lithics from surface collection (Edmonds, in Evans 1994) suggested two phases of activity, the first of earlier Neolithic date, focused on the western part of the site, and the second probably belonging to the 2nd millennium BC, and concentrated near the edge of the floodplain in the central part of the area.

The assessment phase excavation trenches were successful in locating elements of a Romano-British field system and small early Saxon settlement. Prehistoric features were limited to a single pit containing burnt flint and, more significantly, a large natural hollow in the top of a Pleistocene palaeochannel which contained quantities of burnt flint, degraded animal bone and some early Neolithic worked flint near its base. The low density scatter was reasonably presumed to represent episodes of short duration ‘camp-style’ occupation, but the lack of a clear focus (which would normally be defined by a nucleated and high density distribution) suggested further investigation would be both difficult and unwarranted. All in all, the prehistoric activity on the site as defined by the surface evidence looked rather unpromising, and the scatter was not deemed sufficiently interesting or important to warrant further investigation.

During the main phase of excavation, it was realised that the results of the assessment surface collection had been somewhat deceptive. Evidence of Mesolithic, Neolithic and later Bronze Age activity was recorded, including elements of a later 2nd millennium BC landscape with areas of occupation, ceremonial and non-settlement activity. The earliest phases of prehistoric occupation had left little structural trace. There was a fairly random scatter of Mesolithic implements across the site - an obliquely blunted point and three small tranche axes. Only one pit might with confidence be assigned an earlier Neolithic date on the basis of the few pieces of flint recovered from it. Significantly, it was recognised that concentrations of 4th millennium BC flintwork lay within pockets of buried soil in the south-eastern corner of the excavated area, and despite the presence of a few Bronze Age lithics in the ploughsoil immediately above, there was little indication of the presence of this early material on the surface. Post-depositional sorting and perhaps post-Neolithic colluviation had distorted the surface representation of material, hiding one important episode in the site’s prehistory. A percentage of this early flintwork was collected from the surface of the buried soil, and a single one metre square test pit was dug through the apparent centre of the scatter, producing 48 pieces of worked flint, and suggesting localised high densities that were greater than those in the overlying ploughsoil. Compostionally, this early Neolithic assemblage is of a ‘domestic’ character; with core rejuvenation flakes and implements well represented.

The main phase of prehistoric activity on the site belonged to the later Bronze Age, and was represented not only by surface finds of lithics, but by a range of sub-soil features. Open area stripping revealed over 20 prehistoric pits, mostly located in the low-lying ground of the floodplain, and with a very dispersed distribution. Beyond quantities of burnt flint, few produced other artefactual material, though a diagnostically 2nd millennium BC notched flake from one typical pit suggests that many if not all of these features are likely to be Bronze Age. Probably representing some kind of specialised (river-focused) activity, these pits are probably related to the localised concentrations of burnt flint identified in the ploughsoil.

The excavation produced other surprises. In particular, the two main foci of flintworking and lithic deposition - an atypical ring ditch and the alluvium filled natural hollow - left no register in terms of a ploughsoil lithic presence. The large ring ditch dated to the second half of the 2nd millennium BC on the basis of post-Deverel-Rimbury ceramics in its lower secondary silt revealed during machine stripping in the western sector of the excavation. Of small diameter (c.9 m) and sealed under thin alluvium, this monument had evaded both aerial photography and the assessment trenches. It had clearly formed the focus for various depositional events, involving worked flint, pottery and animal bone, starting immediately from its construction. Nearly 500 pieces of worked flint came from total excavation of the ditch, of which only six pieces were implements (1.3% of the total assemblage), two of these being hammerstones. The assemblage was clearly related to primary working. The rarity of chips and the absence of large sequences of refits indicated that this material did not represent in situ knapping. It was clear that the flint had been brought from elsewhere, though not necessarily very far, for deposition in the ditch.

The hollow, 15 x 12 m across and 0.7 m deep, and located on low ground close to the river, was a natural
Figure 2: Bourn Bridge – distribution of worked flint from fills of post-prehistoric features within the main excavation area.
(probably periglacial) feature formed in the top of a Pleistocene channel. The lower deposits comprised layers of sandy clay and blackened gravelly loam, from which quantities of burnt flint and some worked flint had been recovered during the evaluation. The feature was further investigated during the main excavation, though time constraints allowed only very partial sampling: under 10% of lower fills were dug (11 one metre squares in total). Large quantities of worked and burnt flint were recovered, along with some degraded animal bone and 15 g of late Bronze Age pottery. Worked flint was recovered from only six squares, but totalled 344 pieces, 193 from one metre square alone. The lithic assemblage is of mixed (earlier Neolithic and later Bronze Age) date, and includes only a small percentage of finished implements. Quantities of micro-debitage indicate in situ working. It would appear that during both periods the hollow acted as a source for gravel flint, eroded or quarried from the edge, which was worked on the spot. The animal bone and small amount of pottery suggest the feature also provide the focus for other non-settlement activities, though their nature remains unclear. That worked flint was virtually absent from derived contexts in the fills of Roman ditches on either side of this feature showed that such activity was specific to the hollow.

The evidence for later Bronze Age 'ceremonial' and 'industrial' activity was complemented by ephemeral traces of contemporary occupation, though without a readily definable feature component (pits and building plans) this was more elusive and only fully recognised during post-exavacation analysis. By combining evidence from formal and casual surface collection, test pitting and plotting of flint finds from the fills of pre-historic features, it was possible to define the presence of a low-level flint scatter across the gravel terrace edge in the SE part of the excavation. This area had also been the focus of Saxon settlement, which had undoubtedly affected the integrity of the scatter. Nearly 200 pieces of worked flint were recovered from this area. Implements, including piercers, notched flakes and irregular scrapers, all typical of later 2nd millennium BC industries (Ford et al. 1984; Harding 1992), accounted for 19% of the total, giving the assemblage a distinctly 'domestic' character. A few sherds of post-Deverel-Rimbury pottery, in the same fabrics as sherd's from the ring ditch and hollow, came from Saxon features within this area, and metal-detector finds included a later Bronze Age razor and knife fragment. Taken together, the material assemblage is typical for a settlement site of the period, though presumably one that was short-lived.

Technological similarities amongst the respective lithic assemblages, along with the occurrence of pottery in identical fabrics from each of the different contexts, imply that the ring ditch, hollow, area of occupation and perhaps burnt flint pits relate to the same phase of later Bronze Age activity. The archaeology of the site therefore preserves many elements of a late 2nd millennium BC landscape. Taken at face value, contextual evidence, combined with that of compositional differences within the lithic assemblages, suggests a broad functional zoning of activity across the gravel terrace and floodplain, with areas of occupation, ceremonial (the ring ditch) and 'industrial' (the hollow and burnt flint pits) activity being definable.

Hinxton

Whilst the surface lithic presence at Bourn Bridge gave little indication of the character of the underlying prehistoric archaeology, at Hinxton the relationship between ploughsoil flint scatters and sub-soil features was more straightforward. However, whilst occupying a similar location to Bourn Bridge on the 1st-2nd terraces of the River Cam, the site embodies a much fuller history of pre-Iron Age occupation (Evans 1993; Mortimer 1993).

The three seasons of fieldwork (1993-5) at Hinxton produced an assemblage of over 4000 pieces of worked flint. More than half of these were recovered during surface collection undertaken in 1993 and 1994 over the northern and southern fields, and the remainder from excavated contexts, principally from a series of prehistoric pits discovered during the final phase of fieldwork. The material represents over 2000 years of intermittent activity, from the earlier Neolithic to the later Bronze Age, much of which can only be adequately characterised through the lithic record.

Surface collection across the southern field was undertaken in two phases. The first (1993) involved a single north-south transect of 10 x 10 m squares and an expanded area (40 x 50 m) over a cropmark ring ditch, where high densities were immediately apparent. The second stage (1994) involved field-wide collection on a staggered 50 m grid, with certain areas being targeted for intensive investigation. Overall, the distribution of worked flint was patchy, with a specific concentration over the ring ditch, and localised concentrations in the middle of the field, fading out to the north. Worked flint densities varied somewhat between the two seasons, but taken together values fell within the range of 2-38 pieces per square from the main part of the field, and between 4-111 per square over the ring ditch (Fig. 3a). The material recovered was clearly of mixed date - earlier Neolithic.
Figure 3: Hinxton a) distribution of worked flint from surface collection; b) chronological break down of surface scatter, and the location of excavated pre-Iron Age features. Note – the illustration is not intended to present the scatter components as tightly bounded entities, but simply highlights major concentrations and spreads of diagnostic material.
and later Bronze Age - attested by variations in technology and patination. Essentially ‘domestic’ in character, the earlier component was present in a band running roughly NE-SW across the field. The concentration of flint from the area of the ring ditch was technologically characteristic of the mid-late 2nd millennium BC (cf. Harding 1992; Saville 1981), and was composed predominantly of debitage from all stages of core working. A section cut across the monument produced an identical assemblage from a recut in the secondary ditch silts. The barrow had clearly been the focus for flintworking at some stage during the later Bronze Age.

Only 11 pieces of worked flint were recovered during excavations in the middle field, reflecting a very low lithic presence across the centre and eastern edge of the site. However, surface collection and excavation in the northern field produced a very different history of prehistoric activity to that elsewhere on the site (Mortimer 1995). During the evaluation phase of fieldwork a single 10m wide transect, subdivided into 10m units, was walked across the length of the field. 523 pieces of worked flint were recovered. Densities ranged from 0-39 pieces per square, and the overall distribution showed localised concentrations across the length of the transect. Although it was not possible to undertake surface collection across the remainder of the field, as at Bourn some broader sense of lithic distributions could be gained by plotting the occurrence of flint in the fills of later features. This illustrated a sharp decline in flint densities towards the eastern half of the field, though with a distinct and clearly defined concentration in the southern central area (excavation revealed two later Neolithic pits underlying this scatter).

The collected material ranged in date between the earlier Neolithic and later Bronze Age. Though at a basic level comprising one broad field-wide scatter of mixed date, it was felt that more chronological and spatial refinement of this spread could be achieved through detailed analysis. On the basis of differential patination, technological variation and the presence of diagnostic implements, it was possible to isolate specific spreads within the general scatter, each c 20-60m across, belonging to chronologically distinct horizons (Fig. 3b). Six separate ‘mini-scatters’ (equating to separate periods of activity) could be defined in this way: two of low density in the central and northern part of the area, containing a predominance of earlier Neolithic lithics; two of later Neolithic earlier Bronze Age date, one overlapping the earlier northern scatter, and the other in the central southern part of the area; and two more general spreads of mid-late 2nd millennium BC flintwork in the central and northern areas. Compositionally, each of the individual ‘mini-scatters’ would seem to relate to domestic activity.

The interrogation of the surface lithics was complemented by the evidence of excavation. Three pairs of Neolithic pits (one pair early, two late), and a tree-throw hole containing a sizeable assemblage of early Neolithic flint (nearly 500 pieces) and pottery (including Carinated Bowls), occurred within a narrow N-S band along the axis of the north field. All the pits appear to have contained ‘special deposits’, with the contents of each pair appearing distinct and internally homogenous. Fortuitously, the line of the fieldwalked transect corresponded closely with the positions of the pits, allowing the relationship between surface scatter and sub-soil feature to be crudely established. The tree-throw deposition, of early 4th millennium BC date, was located within a zone where an early Neolithic surface presence appeared minimal. Identical depositions within tree-throws (also associated with Carinated Bowls) have since been excavated by the CAU at Barleycroft Farm, Needingworth, on the Fen-edge, and likewise are without a surface signature (Evans pers. comm.). They would appear to represent the wholesale redeposition of midden material - a formal process of ‘tidying-up’ perhaps linked to the final stages in the life of an occupation.

The remaining pits, two associated with Fengate Ware, and the remainder with miscellaneous later Neolithic ceramics and lithics, underlay ‘contemporary’ surface scatters - a direct relationship between surface representation and sub-soil features. Here, the deposits comprised token selections of artefactual material, perhaps drawn from the middens that the surface scatters represent (cf. Brown 1991).

SUBSEQUENT REFLECTIONS
A number of points are immediately raised by the two case studies. The first relates to the degree of correspondence between surface data and archaeology as revealed by excavation. At Bourn, in part because of alluviation, surface collection provided little indication of the extent and complexity of the prehistoric archaeology - this could only be elucidated through full excavation. In contrast, at Hinxton the relationship between surface lithic scatter and sub-soil archaeology was more clear cut, and indeed much of the character and sequence of Neolithic and Bronze Age occupation could be read from the scatter evidence alone. At a most basic level this illustrates the complex and contingent nature of surface scatter evidence, a cautionary point that must by now be all too familiar.

Settlement Histories
Whilst Bourn Bridge and Hinxton occupy comparable river terrace locations, the histories of prehistoric occupation at both proved to be rather different. There is evidence for only limited and short-term occupation at Bourn during the earlier Neolithic, which was not followed by further episodes of settlement for nearly two millennia. Whilst not implying continuity of occupation per se, the lithic and ceramic record from Hinxton is indicative of repeated
settlement within the same location from at least the early 4th through to the later 2nd millennium BC. Accepting a
degree of mobility or impermanence in the format of Neolithic and early Bronze Age settlement (Thomas 1996), it
is possible to envisage spatially and chronologically distinct components of the broader scatter as representing
individual occupation events of several years or decades duration. That the process of repeated return to a particular
locale, seen so clearly at Hinxton, should not occur at Bourn should itself be of interest. Topography or resource
availability alone cannot be factors in this case.

The processes responsible for the formation of the settlement record in this area are clearly more complex
than a series of environmental variables. We should perhaps turn instead to an understanding of the contingent
nature of landscape use and occupation histories. That should involve a critical rethinking of the process of
settlement, and the relationship between people, place and landscape biography - an issue that is not specific to these
sites alone. The key lies in understanding settlement as a form of social practice, historically constituted, involving
intimate experiential knowledge, and key decisions about where and how to live (Pollard 1999). The idea of places
carrying biographies - a move away from landscape as a neutral stage - is also critical to a fuller understanding of
prehistoric settlement histories at sites like Hinxton. In this context, the act of settlement, even if short lived, can
have lasting ramifications that affect the way in which places are subsequently used. We could take a lead from
anthropological studies of landscapes and dwelling, and see how traces of former occupation, whether the remains
of domestic structures, middens or former cultivation plots and clearings, become records and reminders of people and
relationships. Such traces frequently stand as a physical objectification of past and present relations, between
people, and people and the land. Gow, in discussing land relations amongst shifting cultivators in Amazonia,
describes how traces of occupation become "part of lived experience in the sense of 'what is going on' " and what
has previously gone on (Gow 1995). Actions upon the land can have a lasting effect, with intimate memory about
particular people, events and places surviving decades. It is within the context of such a 'landscape of memory and
knowledge' that the repeated return to particular locales over lengthy periods of time might best be understood.

The successive episodes of occupation at Hinxton probably had less to do with matters of resource
availability, than with people being drawn back to a place that carried a specific genealogy of settlement
and previous social relations (see Healy 1995 for a similar interpretation of Neolithic pit cluster sites in East Anglia).
Pit depositions, and perhaps even processes of middening that the scatters may indirectly reflect, could have been
involved in a strategy of symbolically marking/commemorating the action of dwelling, acting as mementos of
relations between groups and particular locales. In this respect, the residues of occupation were themselves actively
embroiled in the practice of settlement, and in the creation of landscape histories.

THE FUNCTIONAL CHARACTERISATION OF LITHIC ASSEMBLAGES
The composition of the Neolithic - early Bronze Age components of the lithic assemblage from Hinxton give little
indication of any functional zoning across the site. The high proportion of implements and low percentage of
preparation flakes suggest that the assemblage may be equated with 'domestic' (rather than any form of specialised
or task specific) activity. However, the later Bronze Age lithic assemblages from Bourn and Hinxton possess a
greater range of compositional variability. At Bourn the implement-rich scatter from the south-eastern part of the
excavation can be related to domestic processes, whereas the assemblages from the ring ditch and hollow were
characteristically 'industrial' (with few implements and many discarded cores). The pattern is repeated to a lesser
extent at Hinxton, with an 'industrial' assemblage from the ring ditch, and a typically 'domestic' look to the later
Bronze Age component of the scatters in the northern field. This degree of functional zoning across landscape
blocks is not evident during earlier episodes of activity at both sites, and must be regarded as historically specific. It
may reflect more general social changes that occurred during the mid-late 2nd millennium BC; processes that
involved a more formalised temporal and spatial structuring of subsistence activities, the creation of permanent
agricultural landscapes and new forms of tenure (Barrett 1994, 146-53).

However, whilst a functionalist interpretation of the compositional patterning in the lithic record was
initially accepted, reflection suggested that the pigeon-holing of different assemblages into commonly used
functional groups such as 'domestic' and 'industrial' might be misleading. Defined areas of occupation and task
specific activity were seemingly present, but the context of the lithics within obviously non-settlement features such
as the ring ditches and the large natural hollow at Bourn created some ambiguity. Put simply, whilst the composition
of the lithic assemblages from these features could be accommodated within traditional categories of functionalist
interpretation, their context told another story. This is clearly illustrated by reference to the 'industrial' assemblage
from the ring ditch at Bourn. Following the interpretation of similar mid-late 2nd millennium BC assemblages from
barrows and ring ditches, the presence of debitage within the ditch of the monument could be seen as representing
the opportunistic exploitation of flint nodules eroding from the sides of the ditch or bank (eg Fasham and Ross
1978, 49-51). Often such debitage occurs in demonstrably secondary contexts, after burial had ceased to be a
principal activity at these sites, and implying the lapsed sanctity of a monument (Edmonds 1995, 184-5). What is
interesting at Bourn is the occurrence of such activity in a primary context within the monument, when the special significance of the structure would still have been appreciated and presumably respected. The implication is that the enactment of flintworking within the monument, or the deposition of the debris from such, carried some special significance; yet, the knapping was functional inasmuch as it was related to tool production. Should such activity therefore be characterised as 'industrial' or 'ritual'? It is obvious that the problem lies in our functional classification of action. Notions of 'industrial' or 'ritual' activity are categories of own making that (in this case) probably bear little relation to those of the later Bronze Age. Recognising the 'otherness' of later prehistoric society is critical (Hill 1993); as is an awareness of the socially embedded nature of technology, 'a phenomenon that marries the material, the social and the symbolic in a complex web of associations' (Pfaffenberger 1988, 249). The occurrence of contemporary lithic assemblages with similar 'industrial' profiles in the Hinxton ring ditch, and in the upper fills of a barrow ditch at Thriplow, a few kilometres to the west (Trump 1956, 7), suggests a recurrent relationship in this region between funerary monuments old or new and the act of flintworking that can not be explained by ergonomic logic. Whatever the precise meanings or motivations behind such activity, it demonstrates an inextricable link between different domains of special and routine practice that cannot be explained through recourse to predefined functional categories.

EPILOGUE: CRITIQUING 'NON-SITE' ARCHAEOLOGY

If the understanding of lithic scatters remains problematic it is because their interpretation is locked into an ageing and increasingly obsolete explanatory framework, one which falls behind mainstream developments in interpretative prehistory. The models by which scatters are regularly interpreted - particularly 'off-site' and 'non-site' approaches - are rarely given critical consideration, yet carry with them a series of underlying assumptions regarding the characterisation of human activity, and ecological versus social determinacy.

The functional categorisation of surface-derived lithic material is central to the dominant models of 'off-site' or 'non-site' archaeology. The basic (and incontestable) premise is that human activity is not restricted to points (sites) within the landscape, but is spatially continuous (Foley 1981). However, a 'non-site' archaeology predicts that activity will vary in intensity and format across the landscape, with different tasks being enacted in relation to the location of different resources. Following Foley, the basic spatial component is taken to be that of the 'home range' - the area over which an individual or group will travel in pursuit of resources. Within each home range may be primary and secondary residential locations, along with other loci where specialist tasks (hunting, the procurement of raw materials and so forth) are undertaken. The archaeological signature of such landscape occupation will be registered in regional rather than site-based distributions of artefactual material. Furthermore, within the landscape-wide general spread of discarded material, there will exist a range of compositional variability that relates to the location and enactment of particular activities. In a perfect scenario, by identifying compositional variability in lithic assemblages across a spatial plain, and relating that variability to particular tasks/activities, the functional structuring of a landscape can be reconstructed.

Such a model has proved very influential in the interpretation of surface lithic data (eg Ford, 1987; Schofield 1991; Shennan 1985; Young 1987), no doubt because of its appeal to be able to 'read-off' the organisation of past human activity across a landscape. However, at its heart the approach is based upon a number of problematic assumptions and value judgements. First, it is constructed within the framework of human ecology (cf. Butzer 1982), and promotes the idea that the structuring of human action within an environment is reducible to the resources that it affords. Settlements, and a host of other activities, which might have generated a lithic signature, are perceived as passive behavioural responses to the location of natural resources. Social relations, culturally constituted perceptions of the natural world, and the power of tradition and history in shaping people's dwelling within the landscape, are seen as of secondary importance - a kind of superstructure to be added on to an ecological base.

Critique may also be offered at the explanatory generalisation implicit in 'non-site' approaches. There is a hidden agenda, inasmuch as the full range of past human action is frequently presented as reducible to a series of basic functional categories - those of 'domestic', 'industrial' and 'ceremonial' in the case of the Monument Protection Programme lithic scatters project (Schofield 1994) - irrespective of time, place and context. Value is placed on understanding the long-term, and compositional and spatial patterns in scatter data 'which are dominant, repetitive and accumulative' (Schofield 1987, 274) - that is easily definable and reducible to explanation within the functional requirements of a non-site model. Although not explicitly stated, spatially amorphous and compositionally mixed scatters are considered 'bad' data because they are less amenable to functional categorisation. Therefore the focus is upon delineating patterns of landscape exploitation and adaptation that are general and repetitive, rather than variable, contingent and historically constituted.

The case studies presented in this paper are specific to one region, but it is hoped that they have served to stress the need for, and potential of, approaches that are interpretative, and do not seek to generalise and impose
explanation from the outset. Like all forms of material culture, lithics are implicated in the lives and biographies of people, practices and places, and the way in which we analyse and write about them should reflect this.

NOTE
1. Fieldwork at Bourn Bridge was funded by Savilles Property Consultants, and directed by Chris Evans and the writer. Work at Hinxton Quarry was funded by Mineral Resources Ltd, and directed by Chris Evans, Mary Alexander and Richard Mortimer.

BIBLIOGRAPHY
Evans, C, 1993 Archaeological Investigations at Hinxton Quarry, Cambridgeshire, Cambridge Archaeological Unit
Evans, C, 1994 Archaeological Investigations at Bourn Bridge, Pampisford, Cambridgeshire, Cambridge Archaeological Unit
Fox, C F, 1923 Archaeology of the Cambridge Region. Cambridge University Press, Cambridge
Harding, P, 1992 The Flint, in The Marlborough Downs: A Later Bronze Age Landscape and its Origins (C Gingell), WANS, 122-33, Devizes
Healy, F, 1995 Pots, pits and peat: ceramics and settlement in East Anglia, in, Unbaked Urns of Rudely Shape (eds I Kinnes and G Varndell), Oxbow Monograph 55, 173-84, Oxford
Hill, J D, 1993 Can we conceive of a different Europe in the past? : A contrastive archaeology of later prehistoric settlement in southern England, Journal of European Archaeology 1, 57-76
Mortimer, R, 1995 Excavations in the North Field, Hinxton Quarry, Cambridgeshire Cambridge Archaeological Unit
Pfaffelberger, B, 1988 Fetished objects and humanised nature: towards an anthropology of technology, Man 23, 236-252
Pollard, J, 1995 Excavations at Bourn Bridge, Pampisford, Cambridgeshire: Part 1, Prehistoric Occupation. Cambridge Archaeological Unit
Pollard, J, 1999 'These places have their moments': thoughts on settlement practices in the British Neolithic, in People, Place and Tradition: New Dimensions in Settlement Archaeology (eds I Brück and M Goodman),UCL Press, London, 76-93
Schofield, A J, 1994 Looking back with regret: looking forward with optimism: making more of surface lithic
Shennan, S, 1985 Experiments in the Collection and Analysis of Archaeological Survey Data: the East Hampshire Survey. University of Sheffield, Department of Archaeology and Prehistory, Sheffield
Thomas, J, 1996 Neolithic houses in mainland Britain and Ireland - A sceptical view, in Neolithic Houses in Northwest Europe and Beyond (eds T Darvill and J Thomas), Oxbow Monograph 57, 1-12, Oxford
Trump, D H, 1956 The Bronze Age Barrow and Iron Age Settlement at Thriplow, Cambridgeshire, Proc Cambridge Antiq Soc 49, 1-12