LITHIC SCATTERS AFTER PPG16 – LOCAL AND NATIONAL PERSPECTIVES

Susan Lisk ¹, John Schofield² and Jon Humble³
Centre for Oxfordshire Studies
Westgate Library, Westgate Centre, Oxford, OX1 1DJ; ² English Heritage, 23 Savile Row, London, W1X 1AB

VALUE SYSTEMS IN ARCHAEOLOGY: A RÉSUMÉ
Value and importance are integral within the modern discipline of archaeology. This can be seen through legal applications, at a philosophical level, and in the practical implementation of Government planning advice. Although this paper is concerned primarily with the latter, and its application to a specific class of archaeological material, some general thoughts on law and philosophy provide a useful framework, to which we will return.

Within a legal context, value can be judged in different ways. In one respect, the law gives archaeological material a publicly recognised value, while particular areas of law give specific value to certain types of material. As Carman has shown, “Treasure Trove is classed as ‘treasure’ suitable for display in a museum. The process has three stages: selection of specific items for treatment; categorisation; and finally placement on an appropriate value gradient” (1995, 30). Carman has concerns about this which he illustrates with an example: in the case of the Snnettisham hoards of Iron Age gold torcs, “(they) were acquired for the British Museum through the Treasure Trove procedure in 1991. In the course of doing so, other features identified at the same location had to be relegated to the status of residuality. Hence, the dismissal of relevant archaeological material is the logical consequence of the use of law. This is what always happens. If we continue to protect archaeological material under the law we are forced to recognise that we can only ever protect a part of it. It is the law that gives that protected material its value - and that law-given valuation then has inevitable consequences for archaeology” (ibid., 28).

More significant in the context of this paper is the place that value systems in general now have in archaeology; this was discussed by Darvill (1995), and a few of the points he raised are worthy of summary here. Darvill’s discussion began with a short résumé on social values, “conceptions of the desirable, whether explicit or implicit, distinctive of an individual or characteristic of a group, which influences the selection and orientation of social action”. He goes on (summarising Butterworth and Weir 1975) to note that values provide the basis for emotional commitment, and that, as such, two dimensions to the development of values can be identified: attitudinal (ie “the arrangements of standards and ideas which define goals and which form the basis of judgements”), and interest-based (relating to “objects and situations which are defined as desirable through the repetitive outcome of a succession of judgements”). In this way material culture can be set on a continuum which ranges from approved to disapproved. Of course the relative positions of material culture along these “value gradients” is dynamic, with the precise position varying through time according to a multitude of stimuli and experiences (ibid.).

A series of value systems relating to archaeological remains has existed in Britain since the medieval period, and partly as a consequence of that, coupled with the requirements of legal and advisory frameworks, that which exists today has a great deal of sophistication attached to it. Darvill identifies three main components to the present value system, their definition based on differences in attitudinal and interest-based orientations (after Darvill 1995, 43-8).

First, use value, based upon the fact that demands or uses are placed upon the archaeological resource by contemporary society. It is therefore a set of values based on consumption, though it is important to stress that consumption itself can be creative - for example in the context of archaeological research and education - and this is borne out in the example of surface lithic material which follows.

The second value relates to the existence of the resource and is underpinned by a psychological imperative in having a past and knowing its well being, without necessarily doing anything about it. At one end of the gradient is the elation of knowing that all is well: everything is safe; existence is assured. At the other end is despondency because the resource is under threat; viability and integrity are marginal and continued existence endangered.

In the case of option value, emphasis is on production, but with the process deferred because, “the temporal context of this value system is ... some unspecified time in the future. It shows a particular respect for those ... who will come after us and who might expect to use the resource in the future” (ibid., 46) - in other words, physical preservation in order to achieve the preservation of options. This is an important point in terms of what follows: “Option values hinge on a projected understanding that future generations will both want to and
be able to make some use of the resource or resources in question; the idea that we have a duty to those who follow. The main quality of the archaeological resource, which is essential to the acceptance of this value, is the question of potential. At one end of the value gradient is the idea of fossilising of some or all of the resource; the "don't do anything now because it might effect the future" argument. The overarching aim is to maintain the resource intact, in a virginal and unexploited state. At the other end of the gradient is the idea that everything is important but that some things are more important than others and that it would be better to lose the less important things than it would the most important things" (Darvill 1995, 46, and returning us to Carman's point, above).

Following the launch of English Heritage's Monuments Protection Programme (hereafter MPP) in 1986, and the need to assess sites and ascribe values for purposes of statutory protection (described by Startin 1993), and following also the publication of Planning Policy Guidance Note 16 (Archaeology and Planning - hereafter PPGI6) in 1990 (DoE 1990) - with its presumption of preservation in situ for nationally important archaeological remains - value judgements for sites and monuments have attained a more formal status. Attributing national importance to monuments of a well known, well-recorded class, based on rarity, potential, representativity, group value and so on, can be straightforward. Some monument types are rare and highly representative of their period (Neolithic long barrows for instance, or Roman villas), and here all surviving examples may be considered nationally important without controversy; yet for others the judgement is more complex and requires more consideration (as in the case of medieval moated sites, the example given by Startin 1993). But there is a further category, which presents particular difficulty: those site types which are poorly recorded and understood at a general (and national) level, but which have immense significance in understanding certain aspects of our past. One such example is surface lithic scatter sites, which are (and are only ever likely to be) the best evidence we have for understanding the nature and distribution of prehistoric (and in particular Neolithic) settlement. With such a poor understanding, ascribing value and implementing procedures, which rely on value judgements, presents difficulties, though experience gained at a national and local level indicates that such difficulties can be overcome. The argument about residuality is important here also. Surface scatters are extremely susceptible to the influences of post-depositional disturbance and the complexities of an as yet barely understood set of site formation processes. By focusing attention on the 'big' sites, we could be missing the most significant evidence for Earlier Neolithic settlement, whose sites would typically have been small with little material trace remaining after abandonment. We have much to learn therefore in the immediate term (use value) and a view needs to be reached on whether (and how) sites - and the artefacts collected from them - should be retained for future use (option value); certainly, within well thought out research frameworks, PPGI6 should provide the opportunity to exploit the use value of surface lithic material, while proposed changes to the 1979 Ancient Monuments and Archaeological Areas Act (to include provision for the remains of settlement sites to qualify for statutory protection), may provide a framework within which option value can be achieved.

In this paper these questions are addressed through local and national perspectives. The local perspective - based on work and experiences in Oxfordshire - describes how lithic scatter sites can be accommodated through development control procedures. This is followed by a short summary of a national review, which aims to improve understanding at a local and a national level.

VALUING LITHIC SCATTERS - OXFORDSHIRE'S PERSPECTIVE

In Oxfordshire, most early 20th century interest in lithics was as individual finds particularly palaeoliths from the gravel deposits along the Thames valley (Roe 1968). Concentrated interest in lithic scatters was not clearly manifest until the mid to late 1980s when a series of extensive, systematic fieldwalking projects were undertaken in the county: Holgate (1988) covered areas south-west of Oxford, Ford (1987) walked parts of south Oxfordshire, and Tingle (1991) focused on south-west Oxfordshire/Vale of The White Horse, all with the objective of researching prehistoric settlement. The primary benefit of this intensive research was the identification of numerous lithic sites delineated by period and function, which contributed to providing an appreciation of the nature of evidence for prehistoric settlement in the county. The importance of this database was only fully realised in the early 1990s, however, when a better understanding of the county's archaeological resource, and its national context, was required for the successful implementation of PPGI6, and - related to that - the progression of English Heritage's Monuments Protection Programme. How significant were Oxfordshire's lithic scatters in national terms? Were any of sufficient quality or 'value' to be described as of 'national importance'? The inclusion of Oxfordshire as a pilot county in English Heritage's national survey of surface lithic material provided the opportunity to investigate (Lisk 1994, and see below). What follows is a brief review of the treatment of surface lithic material in Oxfordshire under PPGI6, and a statement of how the national survey, undertaken as part of MPP, will benefit its implementation in future.

Most of the archaeological fieldwork in Oxfordshire in the decade prior to the publication of PPGI6
involved government-funded road schemes (eg the M40) and utilities-funded projects (eg the Cleeve-Didcot pipeline), as well as early examples of developer-funded excavations (eg Ruben and Ford 1992; Mudd 1993). In that decade gravel extraction companies also funded important work, including the development-led investigation of a lithic scatter at Tubney Woods, Fyfield and Tubney. Here, the original evaluation (Chambers 1988) identified three areas of lithic scatter, all recognised through trenching. A recommendation for further work resulted in a condition linked to planning consent for mineral extraction; the lithic scatters were excavated in 1991 (Bradley and Hey 1993). The methodology consisted mainly of topsoil stripping followed by the excavation of test pits from which material was recovered using variable sieve sizes; this method identified both surface and buried lithic deposits. Excavation revealed that the archaeological deposits were redeposited in tree-throw holes, but, based on the state of preservation and size of concentrations, the source was concluded to be nearby. This analysis reinterpreted the site’s function, chronology, and integrity; specifically, it classified the scatters as representing an early Mesolithic (9800 - 8500 BP) winter base camp with some later Mesolithic and Neolithic activity (Bradley and Hey 1993, 25). Despite this project’s development in the pre-PPG16 era, the quality of work draws on PPG16 standards.

In Oxfordshire, as elsewhere, the significance of PPG16 was felt across the range of developments which had an archaeological implication. This document provided the first clear government guidance on the need for sufficient archaeological information prior to determination of planning consent, and made archaeology a material factor in the planning process. The guidance, aimed at planning authorities, developers, the general public and archaeologists, provided advice on the handling of archaeological remains and discoveries within the planning framework (DoE 1990, para 1). The document emphasises the fragility of the archaeological resource, which it describes as “finite, and non-renewable” (ibid., para 6), and states that the first priority is for in situ preservation. A staged approach for archaeological investigation and application of the Secretary of State’s non-statutory criteria should be implemented to assess the importance of the site and thereby indicate the weight that must be attached to its importance. The staged approach can involve a range of options from desk-based assessments to evaluative work involving trial trenching, fieldwalking, earthwork survey and/or geophysical testing to full recording action or excavation. Much of the responsibility for the survival of archaeological sites lies with the Local Planning Authority, advised by local government archaeological officers, through its development controls and local plans; the onus is placed on the developer to ensure that the conditions of the planning consent are met and, by implication, funded (Baker with Shepherd 1993).

PPG16 is now firmly embedded within the management framework, and reviews of its implementation, in 1992 and 1995, are encouraging. With very few exceptions, every local planning authority in England is implementing PPG16 in a way that ensures archaeology is given appropriate consideration in determining planning applications. It should be added, however, that some local government archaeological officers still have difficulty persuading local planning authorities to accept recommendations for field evaluation prior to determining a planning application. In Oxfordshire, many archaeological sites have been subject to the staged approach of investigation advocated by this document. Previously known lithic scatters and findspots have been included in this, but most of the scatters subject to investigation under PPG16 have in fact been identified in the course of this process through evaluation trenching, not through fieldwalking, as in the pre-PPG16 era (for a general review of the use of field methods in archaeological evaluations see Champion et al. 1995). Generally, fieldwalking in Oxfordshire has been limited to extensive areas earmarked for development and which were at the time under cultivation, for example areas designated for mineral extraction or for large scale housing/leisure development (this conforms to the general patterns of use recorded by Darvill et al. 1995, who note how this method is favoured on sites of over 20 ha; in their national survey of evaluation methods from 1982-91, they noted its use in 11.8% of all field evaluations investigated). Fieldwalking has also been effective as an evaluative technique for pipelines (Lingard and Wilson 1995) and road schemes (Timby 1993; Trust for Wessex Archaeology 1993), especially the latter given the greater transect widths. Gravel extraction projects have also yielded lithic scatter information from fieldwalking; the most extensive example has been the Yarnton Floodplain Project, funded by English Heritage, and consisting of extensive investigation of a major multi-component site (Neolithic through medieval periods) on the Thames floodplain (Hey 1996). Although not originally covered by PPG16 or a planning condition, the site has been comprehensively studied through an intensive programme of fieldwalking over more than 200 hectares, yielding information on lithic scatters located on gravel islands and consisting of high proportions of burnt flint (Hey 1991, 20), as well as assessments on the potential of the remaining areas. An extensive programme of evaluation trenching and excavation has followed, with significant results particularly for the Neolithic and Bronze Age occupations (Hey 1996).

Since PPG16 was published, evaluations in Oxfordshire can deal with lithic scatters found in evaluation trenches by tailoring the programme of work to help define the extent, chronological association and integrity of any lithic deposit. Recent work at a housing development site near Bicester revealed Mesolithic material in an
evaluation trench (Birmingham University Field Archaeology Unit 1996); further excavation of the area was required in the mitigation phase to assess the extent, character and chronological aspects of the scatter. The area of a recent planning application at Tubney Woods (Cotswold Archaeological Trust 1995) was subjected to a full evaluation programme of trenching and test pitting solely because of its location relative to the productive Mesolithic scatter found 500 m to the north (see above). It is interesting to note that no part of the programme was curtailed despite negative results.

Another example of post-PPG16 treatment of lithic scatter sites involves a Mesolithic site closely associated with an apparently in situ flint-working floor, discovered in 1913 at the base of Windmill Hill, Nettlebed, on a recreation ground and large sandpit (Fig. 1). This flint-working floor was originally described as Upper Palaeolithic by Peake (1915), but later reclassified by Case (1952-3) as Mesolithic. When Thames Water Utilities obtained planning permission for the construction of a second local supply reservoir on the summit of Windmill Hill, their archaeologist, in consultation with the County Archaeologist, agreed that an evaluation would be necessary to assess the archaeological character of the site and to develop a strategy for the archaeological recording during subsequent construction works (Trust for Wessex Archaeology 1994). Seven evaluation trenches were dug; five yielded flint artefacts which comprised a homogeneous assemblage predominantly of blades and bladelets from prepared cores and microliths, all indicative of Mesolithic date, and all in mint condition. The assemblage, by its composition and limited extent, was interpreted as being suggestive of a Mesolithic camp established next to a spring (Trust for Wessex Archaeology 1994, 9), now visible as a pond on Figure 1. The material clearly was not in situ, but was significant because of its state of preservation, its extent across the summit, and its probable attribution to a single phase of activity within the Mesolithic (Trust for Wessex Archaeology 1994, 10). Because of the relatively shallow depth at which the lithics were found, it was concluded that any plant activities would disturb the archaeological deposits. Subsequent archaeological work at the site involved excavation of 37 test pits within the development area. The excavation produced a similarly homogeneous assemblage composed of more than 6300 lithic artefacts, and dated to the later Mesolithic (Boismier and Mepham 1996). Functional analysis of the lithics revealed an assemblage suggestive primarily of a seasonal residential location, while spatial analysis suggested an artefact distribution indicative of multiple reoccupations with overlapping functions (Boismier and Mepham 1996, 18).

Clearly, the availability of PPG16 has aided the identification, assessment and investigation of lithic scatter sites in Oxfordshire. Indeed, lithic scatters, whether known or previously undiscovered, can be said to have benefited from the implementation of PPG16 by Local Planning Authorities generally, in consultation with local government archaeological services. With the additional support of a national overview, thus far completed to a pilot phase, these sites can be given value, whether on the basis of previously available information or in terms of their potential - their 'use' and 'option' value - and highlighted as constraint areas on development control maps maintained by the Sites and Monuments Record and copied to the District Planning Authorities. As will be demonstrated in the following section, the national survey will have the advantage of providing a credible basis for decision making at a local level, based on a thorough appreciation of knowledge of surface lithic material nationally. We believe ‘national importance’ is demonstrable by means of a rapid overview of recorded evidence; the method and potential of this approach is now described.

THE NATIONAL VIEW
The Surface Lithic Scatter Sites and Stray Finds Project was set up in 1993, initially with a pilot study covering four English counties (Schofield and Humble 1995), one of which was Oxfordshire. The pilot study had four objectives:

1. to enable curatorial decision making;
2. to provide a database of research potential;
3. expedite the definition of future research priorities;
4. facilitate the appraisal of methodologies of data collection and interpretation.

This pilot study is now complete, and to present this briefly we will concentrate first on the methodology, and second on some of the results.

The methodology is detailed in Schofield (1994). From existing sources, which included principally the Sites and Monuments Records (held by each of the counties), all stray finds and scatters were recorded. Details of location and date were recorded for each entry, as were various other factors including: the degree of survival, integrity (whether the scatters are known to be discrete), documentation (in terms of further work undertaken),
Figure 1: Site and trench location
association with other types of contemporary monument, the size of the scatter (numbers of artefacts), and the interpretation attributed to it by the collector or author. The data were recorded in such a way that they could be integrated with a GIS, and subsequently investigated using statistical and other methods and approaches.

At the crudest level, the results tell us how many scatters and stray finds there are, and where they are. This can be presented at a national scale and countywide. We now also have some general information on the degree of precision with which details of provenance have been recorded. This ranges from ten Ordnance Survey coordinates, which if correct denote location to within 1 m, through two figure coordinates (accurate to 10 km), to no more than a parish name. It is encouraging to note that some 90% of scatters recorded in the pilot study can be located to an accuracy of less than 100 m, and 36% to less than 10 m (Humble and Schofield 1996). So records of provenance are generally good, contrary to popular belief.

Statistical analysis of the results (undertaken for English Heritage by Kris Lockyear and Stephen Shennan, 1996) provides more detailed insight, both at an inter- and intra-county level. For example, in terms of assemblage size, there is little difference between the counties, despite there being significant differences in the history of collection and the nature of the archaeology. In general, small and very small assemblages (<49 artefacts) make up between 78 and 85% of all scatters. The periods represented by scatters are of interest in terms of the relative numbers of single and multi-period scatters (single period scatters represent 43% of the total for example), while division by period shows how few Palaeolithic scatters there are, how many scatters are not dated, and how similar the figures for Mesolithic and Neolithic material appear to be. The figure for scatters containing only Neolithic material has particular relevance in England, where only fifty locations have produced Neolithic buildings, only a selection of which may represent "houses" in the true domestic sense (Darvill 1996).

The location and form of the living places of Neolithic communities in England has therefore not surprisingly been on the research agenda for some time (Schofield 1995). Some 340 Neolithic only scatters were identified in the four pilot counties, which multiplies up to a possible 4000 nationally (assuming the area covered by the pilot study to be representative). So in terms of understanding Neolithic settlement, these data must be significant and we should do all we can to read them effectively.

In terms of integrity (the extent to which scatters are discrete or spread), results show on the one hand that most scatters are spread and do not have recognisable boundaries, and second that within this there are significant regional variations. These figures may relate to the nature of the archaeology, the level of systematic work undertaken, and so on.

The results also show the extent to which non-systematic survey has predominated, the fact that most recorded scatters still survive in some form, and that in 94% of cases, no additional work has been undertaken on them (geophysical survey or excavation for instance). In most cases very few undated scatters were found by unsystematic survey, whereas a large proportion of the systematically surveyed scatters are undated. Function (defined here as the nature of activity as interpreted by the collector or author) will inevitably be of interest to those exploring regional trends in land-use and settlement. Alarmingly, 93% of all scatters have no known function. So, of the 1173 scatters in one of the counties (Cornwall), only around 60 could be attributed a function, even defined in such broad terms as settlement, industrial or ceremonial. Some have gone so far as to say: if that's the case, what is the point?

Clearly we have much still to learn about surface lithic material, though precisely how much and what, we will not know with confidence until a national review is complete. Once available, such information would be accommodated in part through the implementation of PPG16 at a local level, with targeting effected through the development of national and regional research frameworks (eg that published for Hampshire by Hinton and Hughes 1996, and English Heritage's Exploring Our Past 1992 and current Research Frameworks initiative). Many research questions could be addressed in this way, given how little we currently know about prehistoric settlement across much of England; here, briefly, are just four very specific questions that might usefully be considered in the future, based on the results of this national survey:

1) We should look critically at methodologies, and specifically the way results are collected and presented. There should be some standardisation in the way records of surface artefact survey are made available to the curators responsible for maintaining them. We do not believe a standard methodology is appropriate or indeed necessary, but a standard format to which results must be tailored for inclusion on archaeological record systems, has to be considered. There are, for instance, certain key-facts, defined at the lowest common denominator, which any systematic survey can provide. Artefact density per unit area, for instance, and relative proportions of the different classes of artefact (number of primary flakes per core; proportion of tools and retouched pieces). Such facts recorded, for instance, per field or collection unit, would enable straightforward comparison of results both within and between survey areas, irrespective of the collection strategy adopted. Another question concerns the value of undertaking only systematic survey, where we know from the pilot study that diagnostic artefacts
result more from extensive non-systematic work, and that function can rarely be attributed to the results of intensive systematic survey. Should survey therefore include both systematic intensive collection, and the rapid unsystematic trawling of the countryside for the diagnostic items which give those results chronological context? And should we make more use of ploughsoil excavation, as was suggested recently by Steinberg (1996)?)

2) It would be helpful to use this initiative to plug surface lithic data into the results of other current initiatives concerned with resource and character mapping. English Heritage in conjunction with other national and regional organisations, have undertaken much work recently on character mapping, looking to define regions (including historic regions) by their distinctive qualities. An exercise by Brian Roberts and Stuart Wrathmell, for example, has attempted to map the settlement zones of nineteenth century England (summarised in Roberts et al. 1996), zones within which the character of medieval - and perhaps earlier - settlement will be distinct. Other projects, one the work of English Heritage and the Countryside Commission, and another by English Nature, have attempted to view the character of the countryside at a national scale, while comparable work has also been undertaken at a regional level, in Cornwall for instance. We would like to see the evidence for prehistoric settlement considered within these now available frameworks.

3) Also at this national level, and returning to the points made at the start of this paper, surface lithic data could be integrated more effectively with other types of archaeological evidence. In a recent paper, for instance, Harding (1995) has explored regionality in the English Neolithic, through the form of causewayed enclosures, cursus monuments and henges. These regional differences appear to persist throughout the Neolithic and may reflect fundamental distinctions between the make up of distinct political communities. If so, might we expect to also see subtle differences in some aspect of the settlement pattern and material culture? With a national database, some analysis of the characteristics of the settlement pattern may be possible.

4) Finally and most obviously, this national survey will reveal where the gaps in our knowledge lie in geographical terms, and these can be assessed and prioritised accordingly. In West Yorkshire for instance, much is known of the Mesolithic on the Pennines, but less about later prehistory of the adjacent lowlands. Similarly, Gardiner (1996) has already identified some possibilities for further work in Hampshire.

CONCLUSION: THE VALUE OF SURFACE SCATTERS

This paper has addressed three points: first, the fact that archaeological material is necessarily subject to value judgements, but that such judgements are themselves influenced by perceptions of data quality and usefulness. Here it is argued that (contrary to what sometimes comes across as popular belief) surface lithic material can represent ‘good data’, but that does depend on the questions being asked. If the question is whether a habitation site can be defined spatially and temporally, as if by excavation, the answer will generally be that it cannot (just as the excavation of a habitation site will give little information about patterns of occupation at a regional level, or about broad chronological trends). Second, good practice at a local level in applying and implementing planning policy guidance through PPG16 can contribute much to understanding the data, both their limitations and role in the interpretation of regional settlement strategies. Furthermore, experience gained will enable curators at a local level to develop a ‘nose’ for the location and likely significance of surface scatters; this may be less scientific and less sophisticated that predictive modelling (eg Hosfield 1996), but it might have its uses nevertheless. Third, this paper has provided a summary of English Heritage’s national survey, both to demonstrate the level of information which necessarily underpins the provision of strategic advice at a local level, and which will contribute to developing a research framework, identifying the questions most worthy when opportunity knocks.

Returning to the question of value, it is argued here that surface scatters have considerable use value: they represent the bulk of the evidence that exists in England for prehistoric settlement. Indeed, for the Neolithic period, we have virtually nothing by way of structural remains, and consequently our ability to develop a sound understanding relies almost entirely on the evidence of surface material. There is the additional (and significant) problem of being able to attribute meaning to the data generally, but that lies beyond the scope of this paper and has been addressed elsewhere on numerous occasions (eg various papers in Schofield 1991). Existence value probably has little relevance here, given that surface scatters have no real amenity interest and, as a site type, are unknown to most people except those with a practical involvement or interest in archaeology. Option value, however, is important. Methods of analysis will continue to develop, and changes in the questions asked of the data, and the places and landscapes in which those questions are asked, will alter. Of course, there will never be any shortage of surface scatters for analysis, but certain high potential sites, discrete and in areas where geophysical or geochemical survey may be rewarding, for example, could be worth safeguarding for a time in the
future when certain, highly focused questions can be directed towards them. As surface scatters do not currently qualify for statutory protection through Scheduling under the terms of the 1979 Ancient Monuments and Archaeological Areas Act (not being demonstrably “buildings, structures or works, or the remains thereof”), development control provides the most effective means to achieving that. Experience in Oxfordshire is encouraging, and in providing the national context, it would be the intention to enhance the profile of these sites, and the credibility for decisions made in the planning system, ensuring opportunities are not missed and good data not lost forever.

ACKNOWLEDGEMENTS
We are grateful to Paul Smith and Hugh Coddington for commenting on an earlier draft of this paper. A version of part of the section describing the national review has appeared elsewhere (Shoefield in press).

BIBLIOGRAPHY
Baker D with Shepherd, I, 1993 Local authority opportunities, in Archaeological Resource Management in the UK (eds J Hunter and I Ralston), 100-114, Alan Sutton/IFA, Stroud
Boismier, W A and Mepham L N, 1996 Excavation of a Mesolithic Site at Windmill Hill, Nettlebed, Oxon, Oxoniensia 60, 1-19
Bradley, P and Hey G, 1993 A Mesolithic Site at New Plantation, Fyfield and Tubney, Oxfordshire, Oxoniensia 58, 1-26
Darvill, T, 1995 Value systems in archaeology, in Managing Archaeology (eds M A Cooper, A Firth, J Carman and D Wheatley), 40-50, Routledge, London and New York
Hinton, D and Hughes, M (eds.), 1996 Archaeology in Hampshire: a framework for the future, Hampshire County Council
Humble, J and Shoefield, J, 1996 The Lithic Scatters Project: where does it come from and where is it going? CAS News 5, 7
Lingard, C and Wilson, M, 1995 *Archaeology Along the Chalgrove-Didcot British Gas Pipeline, Oxfordshire, 1995*. Unpublished ms
Mudd, A, 1993 *Excavations at Whitehouse Road, Oxford, 1992*, *Oxoniensia* 58, 33-85
Peake, A E, 1915 *A cave site at Nettlebed, S. Oxon*, *Proc Prehist Soc* 2, 71-80
Ruben, I and Ford, S, 1992 *Archaeological Excavations at Wallingford Road, Didcot, South Oxon, 1991*, *Oxoniensia* 57, 1-28
Startin, B, 1993 Assessment of field remains, in *Archaeological Resource Management in the UK* (eds J Hunter and I Ralston), 184-196, Alan Sutton/IFA, Stroud
Steinberg, J, 1996 Ploughzone sampling in Denmark: isolating and interpreting site signatures from disturbed contexts, *Antiquity* 70(268), 368-92
Trust for Wessex Archaeology 1993 *A43: M40 to B4031 Improvement: Preliminary Archaeological Investigation*. Unpublished ms
Trust for Wessex Archaeology 1994 *Nettlebed Reservoir, Nettlebed, Henley-on-Thames, Oxfordshire - Archaeological Evaluation*. Unpublished ms