INTRODUCTION

Lincolnshire, the second largest county in Britain, has produced only a handful of Palaeolithic artefacts. While other areas of southern and midland Britain show widespread and fairly abundant evidence of human occupation during the Middle Pleistocene (Wymer 1999), evidence from Lincolnshire is very sparse; indeed, it is well known that most of the handaxes from the Lower Palaeolithic find spots in Britain seem to be concentrated south of a line from the Bristol Channel to the Wash. (Roe 1981).

A large part of this pattern must relate to the impact of the Pleistocene climatic glaciations, several of which (including the last one), saw massive ice sheets cover the county with the landscape being shaped and re-shaped by glacial and fluvio-glacial action. However, some geologists believe that the tops of the High Wolds were elevated above the ice during the Devensian, which might explain why some Palaeolithic pieces are still being found on the present day surface by field-walking, and further suggests that collection and excavation practices are contributing to the apparent find blackspot.

This paper provides a short account of the four finds of Palaeolithic handaxes discovered during field-walking, which are portrayed here together for the first time. John Wymer has rightly said that these are rare finds, especially for Lincolnshire, and they are on the periphery and represent a very important extension to the area of the known Palaeolithic occupation of Britain.

THE RIVER LYMN

The River Lymn is situated at the southern end of the Lincolnshire Wolds about 4km northeast of Horncastle, where water percolates from the foot of the Blue-stone Heath Ridge of the High Wolds to form one of the tributaries of the Lymn. The river flows out of the Wolds and flows south-eastwards across the East Marsh and Fens to join the Steeping River which then empties into the Wash. (Fig. 1).

Figure 1: Map showing the Lymn and Steeping Rivers
GEOLOGY

At the southern end of the Wolds, the west rim of the Lynn Valley rises to 135m. Except for the top 25m of chalk, they are composed mainly of rocks of the Lower Cretaceous series. (Claxby Ironstone, the Tealby Clays and Limestone's, Fulletby Beds and Carstone and Spilsby Sandstone). South of the town of Louth and particularly in the Spilsby area, the Spilsby Sandstone forms an important sandy platform that figured in the pre-historic settlement of the Lower to Middle Pleistocene.

Around Tetford and Salmonby (Fig. 2) the area possesses extensive spreads of Pre-Ipswichian and Devensian Tills. Pockets of Till, with minor associated sand and gravel deposits are also noted. The tills crop out mainly on elevated ground. Both clayey matrices and erratic's indicate local derivation from the north. (Straw 1961, 1991; Jukes-Brown 1885, see Fig 3).

The hard rocks would have had a certain amount of protective influence on any Palaeoliths made and used, then discarded before the last glaciation. Among one of the most important spreads of gravels in the Horncastle-Tattershall region, (see Fig 3) is an area associated with the River Bain, where there are angular flint pebbles that had a marked effect on settlement in this area. (Swinnerton and Kent, 1949).

Figure 3: Glacial geology of the study region

KEY

Devensian glacial deposits, mainly tills
Maximum limit of Devensian ice
Maximum limit of Devensian extra-glacial lakes
Pre-Ipswichian glacial deposits, mainly tills

ARCHAEOLOGY

While Lincolnshire has not been amongst the foremost in finds from the Lower Palaeolithic, it is becoming increasingly apparent that the Lynn Valley is one of the most interesting areas for investigation south of the River Humber. The land around the head waters of the Lynn Valley has been a source of prehistoric artefacts since the early part of the last
century, but it was not until more of the pastures were ploughed at the end of the second world war that the full potential was realised. In the 1950s G. V. Taylor who farmed in the valley with his brother Derek, noticed prehistoric artefacts in the plough soil and in 1954 found the first Palaeolithic handaxe and some flakes. This handaxe was described by A. D. Lacaile F.S.A. as of advanced Acheulian manufacture. (Petch. D. 1956).

Previous work has helped to identify some of the more important find spots (Petch. 1956; Phillips et al. 1990; Bee & Owen 1993; Bee and Bennett, 1997), but other considerations must also come into play - accessibility. The villages of Tetford (TF33007450) and its smaller neighbour Salmonby (TF32607340) are not yet spoiled by urban sprawl, so fortunately the area is not being threatened. It is the fields around these two villages which form the main areas for the current research. (see Fig 2). A decision was made by the author to walk these fields, record and catalogue the finds, in the hope of finding more Palaeolithic artefacts. Details of find localities and grid references were obtained from the S.M.R., and the walking was carried out by using 5 metre transects. The narrow transects were used to be able to discriminate between the different types of flint. The results were beyond my expectations.

PALAEO LITHIC FINDS

Four handaxes were found during the present field-walking survey. The first (Fig. 4) was found eroding from till at 130m O.D. It is an ovate handaxe with a thick creamy patina and iron staining on the ridges. The piece exhibits some edge damage but is still in sharp condition.

The other three handaxes were all recovered on or near the 60m contour. The first (Fig. 5) is a rough cordiform with large patches of cortex remaining. The piece shows wind erosion, water abrasion and has been subjected to thermal damage on one side. It is made of a honey-coloured flint. The second piece from this altitude (Fig. 6) is fairly thick and broadly ovate in shape, with a slight twist to one edge, although it would not really qualify as a twisted ovate. It is made of grey flint with a moderate patina. It too has been water polished and also show some evidence for water-abrasion and thermal damage. The final handaxe (Fig. 7) differs from the others in being pointed in shape and being made on a flake. It shows a thermal break along one edge and the surface exhibits what is probably wind polish.

Figure 4: Handaxe found at 130m O.D. (scale approx. 1/2)
Figure 5: Cordate handaxe (scale 2/3)

Figure 6: Ovate handaxe showing a slightly twisted edge (scale 2/3)
CONCLUSIONS

Although Lincolnshire is currently something of a void in terms of Middle Pleistocene archaeology, the current fieldwalking project has shown this to largely be a preservation and collection issue. Dedicated fieldwalking exercises, such as the current project, are starting to reveal more about this period for this part of the country, showing once again the value of this simple yet effective method of survey.

ACKNOWLEDGEMENTS

I owe a debt of gratitude to a number of people mentioned below. To the various farmers who have given me permission to walk their land, without which none of this would have been possible. Also, thanks to John Wymer who gave me advice and identification of the material, and to David Hopkins, for the illustration of the four Hand-Axes. I would like to take this opportunity to congratulate him for the quality of the art. Finally thanks to Mark Bennett, Sites and Monuments Officer Lincoln and Thomas Cadbury and Adam Daubney, City and County Museum

BIBLIOGRAPHY

Straw, A. 1961. Drifts, Meltwater Channels and Ice Margins in The Lincolnshire Wolds. The Institute of British Geographers publication no. 29

Wymer, J. 1999 The Lower Palaeolithic Occupation of Britain. Salisbury: English Heritage and Trust for Wessex Archaeology

Cornerways
Stainton Lane
Scottern
Lincoln
LN2 2UR