Application forms for the bursary can be obtained on the Society’s web-site (http://www.britarch.ac.uk/lithics/index.html). Completed application forms should be submitted by email to the Society’s Chair at ffws@soton.ac.uk or by post to the Secretary, Lithic Studies Society, Dept. Prehistory & Europe, British Museum, Franks House, 48–56 Orsman Road, London N1 5QJ by 15th January each year. A bursary sub-committee comprising the Chair and two co-opted members of the Committee will then consider all applications and its decision will be final. The successful applicant, or in exceptional cases, applicants, will be notified by 10th February each year. Successful applicant(s) will be expected to provide accounts and a brief report on the activity supported by the bursary. The latter will be published in Lithics.

The award is subject to the Society having the appropriate funds and in exceptional years there may be two awards.

Lithic Studies Society Committee

A VISIT TO SPIENNES FLINT MINES, BELGIUM

On a short holiday in Belgium in the autumn of 2005 I visited the Neolithic flint mines at Spiennes, a UNESCO World Heritage site, after reading about the site in a publication on the archaeological heritage of the six regions making up the Planarch area (Williams & Evans 2001). The site is located a few kilometres south-east of Mons, and is one of a group of flint mining complexes in this area. Although it was closed to public visits at the time, I was able to visit by special arrangement with Hélène Collet, one of the archaeologists working at the site.

There is evidence for Upper Palaeolithic and Mesolithic activity at Spiennes, but the large-scale exploitation of the flint did not commence until the beginning of the Neolithic period, around 4,000 BC, and continued through into the Bronze Age, around 2,000 BC. Close to the flint mines at Spiennes is the Michelsberg camp. This site comprises an area of some seven hectares enclosed by two concentric ditches each with an internal bank. Although it is largely unexplored, artefacts show it to be a probable settlement site that was contemporary with the flint mines.

The mines at Spiennes were initially discovered in 1843, although the first excavations were undertaken during railway construction in 1867 (Briart et al. 1868), and since then intermittent excavations have been carried out up to the present day. Details of the excavations carried out between 1953 and 1986 at Petit-Spiennes have been published (Societe de Recherches Prehistoriques en Hainaut 1997). Excavations are currently ongoing alongside the shaft I visited.

The site is spread over some 150 hectares, and although the exact number of shafts is not known, they are thought to number in their thousands. The Neolithic miners used both mining and open-cast working to reach the seams of flint running through the chalk. Some of the excavated mine shafts have extended to a depth of eight to 11 metres at Petit Spiennes, and eight to 16 metres at Camp-à-Cayaux. Each mine shaft then has a number of galleries radiating out from the shaft (Figure 1), exploiting the chosen seam of flint. Upper seams of flint have often been ignored, although sometimes there are short galleries exploiting these seams as well. The galleries are between two to five metres in length, and in the areas where
mines are concentrated the galleries occasionally ran into backfilled galleries of other shafts.

One major difference between the mines at Spiennes and those excavated in England, is that the initial shaft is frequently very small, often little over 1m in diameter and only once the flint seams are reached does the shaft broaden out (Figure 2). This is probably due to the fact that the chalk is often overlain by clay. Occasionally the top of the shaft is slightly broader, forming a funnel shape.

The preferred seam of flint comprised large tabular nodules, up to two metres in size. These were mined using the Foudroyage technique; firstly the block of flint was undermined by
digging away the chalk below it, all the time supporting the flint with wooden props. Once the flint had been completely undermined the props were pulled from under it and the flint crashed down, breaking into smaller fragments of around 30kg to 50kg, which were then collected and taken to the surface (Hubert 1997). Blocks of chalk have been found that may have been used as counter-weights in a trestle lifting arrangement.

Around the shafts were the flint working areas, comprising simple irregular hollows up to 1m in depth, with perhaps light shelters for protection from the elements, and small hearths for warmth. These areas were littered with the débitage from the knapping of the flint nodules to manufacture a variety of implements which included: core tools such as axes, adzes and picks, together with sickles, scrapers, dagger blades, and burins. Working debris was also found in the backfilled mine shafts, including cores and other débitage, rough-outs and scrapers, together with wooden, flint and antler picks. Animal bones that may have been used as digging implements were also found, but no lamps have been recovered yet. A human skeleton was also found in one of the shafts.

Having recently been to Grimes Graves, it was interesting to compare the two sites. The site at Spiennes is much bigger than Grimes Graves, but as it is largely on agricultural land there are few craters and spoil heaps to be seen on the surface. Both sites have a single shaft open, but whereas at Grimes Graves you cannot enter the galleries, at Spiennes we could walk along some of the galleries, as they are much larger than those at Grimes Graves. Spiennes is also very much a working archaeological site, with ongoing excavations alongside the open shaft, although there is no museum or other facilities at the site.

Although Belgium is sometimes viewed as a historical and archaeological backwater, this fascinating site at Spiennes is definitely worth a visit (Figure 3), and when combined with the numerous archaeological parks, museums and other sites nearby, makes a good destination for a short holiday break.

Figure 3: View of the galleries in one of the mine shafts at Spiennes

I would like to thank Hélène Collet and Michel Woodbury for making the arrangements for
my visit, and Liza Stewart who accompanied me and translated the two Belgian publications on Spiennes.

References


Chris Butler
Rosedale, Berwick, Polegate, East Sussex BN26 6TB
E-mail: chris@reltub.fsbusiness.co.uk

GIANTE HANDAXES FROM CUXTON: ERRATA AND CLARIFICATION

Further to my paper in the R.J. MacRae memorial volume on the recent handaxe discoveries at Cuxton (Wenban-Smith 2004) there are two points requiring correction and clarification. Firstly, concerning the stratigraphic context of the giant handaxes, the correct context of both of them is level 2a, not 2b as given in the text (p. 17). In Figure 2, the triangle with "30" inside it represents the find-number of the in situ cleaver, which is shown correctly in level 2a; Figure 4 shows (from the base) Chalk bedrock, levels 1a, 1b, 2a, 2b and 3, with the cleaver visible in the slightly gravelly level 2a.

Secondly, concerning the dating of the Hoxnian lower industry, this is intentionally listed in Table 1 as "11[10?]" in the part of the table covering sites from "Hoxnian/early Wolstonian complex?"; it is then, injudiciously, discussed in the text (p. 19) as part of the group of sites in the period MIS 10–8. The dating of the Hoxne sequence is currently under investigation by the Archaeology of Human Origins in Britain project (AHOB) and the results of this re-investigation are not yet available. Pending this revision, prior work at the site (Moir 1926) demonstrated the presence of an arctic bed capping the main interglacial sequence at another part of the site to where the main lower industry assemblage was recovered in the 1970s (Wymer 1985). The lower industry itself is from a horizon (stratum C) associated with cool climatic conditions, which overlies the main interglacial sequence, and is divided from it by an erosional hiatus. It is uncertain whether or not the arctic phase, which must signify an event of glacial status in the MIS record, predates the deposits containing the lower industry. Thus there is some uncertainty over whether the lower industry is associated with a sub-stage of MIS 11, or with a post-MIS 11 sub-stage with a similar faunal assemblage to the main Hoxnian represented in the lower strata D and E. In either case, the main thrust of the suggestion that there is a trend through the Lower Palaeolithic for increasingly varied and well-defined handaxe types is not affected.

References

Moir, J.R. 1926. The silted-up lake of Hoxne and its contained flint implements. Proceedings of the Prehistoric