JOHN WYMER BURSARY 2008

SKEUOMORPHS AND STONE-WORKING: A PRELIMINARY REPORT

Thanks to the generous support of the John Wymer Bursary, I have been able to visit a number of museums in the Netherlands and northwest Germany to continue my doctoral research into so-called stone skeuomorphs of metal. I am exploring the relationship between metal and stone (and concomitantly between metallurgy and stone-working) in the period of earliest metal use, the third and early second millennium BC, in northwest Europe. I have identified three separate corpora of stone ‘skeuomorphs’ — or conscious imitations — of metal: “fishtail” flint daggers from Jutland (Lomborg 1973; Apel 2001); Knaufhameräxte (K-axes) from the Netherlands and surrounding areas (Bakker 1979); and jet spacer-plate necklaces from the UK (Craw 1929; Coutts 1969; Sheridan & Davis 2002). Each of these three classes of objects is characteristic of a different period and region within the broader adoption of metal and metallurgy in northwest Europe. I am focussing on the morphological and cultural relationships between stone and metal objects in light of the social and technological contexts in which they were made, used and discarded. I am not just asking whether people were making stone imitations of metal, but why (or why not). I am trying to understand what (if any) roles these stone skeuomorphs played that differentiated them from their metal prototypes and in what ways they were perceived differently. Moreover, since each type of object is made in a different material, necessitating a different set of technological knowledge, I am able to examine how different sorts of stone-working and stone materials were affected by the introduction of metal.

During spring and summer 2008 I visited museums in the Netherlands, northwest Germany and Denmark to begin my studies of K-axes and to continue recording fishtail daggers. Not many of these axes are known — 57 have been published of which 32 (56%) were available to be examined — but among the latter I have found a great deal more variety in morphology, find context and traces of wear than expected from previous typological descriptions (e.g. Bakker 1979; Brandt 1967). There seems to be a distinct sub-group of very large axes (roughly 17cm long) with a long cylindrical shaft between the shaft-hole and a mushroom-shaped butt (Figure 1). Of the axes and axe fragments I have been able to examine 44% have this shape while the rest vary significantly in length, butt shape and general morphology (Figure 2). The rarity of these axes in this region, combined with this distinct grouping suggests to me that while a handful were made to known specifications — perhaps by the same individual or within the same community — most were bespoke objects made perhaps to match a verbal description or a briefly seen object rather than a well-known or specific prototype. Many have been re-sharpened — some significantly — and they often have traces of bruising and grinding on the butt. However this latter may reflect more modern wear as many were found by farmers and employed around their farms as weights, amulets (to ward off illness in cows or lightening strikes on barns!) and hammers before they became part of museum collections. The fishtail daggers I have been studying also show a great deal of variability in workmanship, style, and wear. Nearly half of the 275 I have examined seem to have been resharpened and about 15% have what I am calling a handling polish11 at the junction between blade and handle. Additionally the handles of 104 of these daggers (38%) share a distinctive wear pattern that I believe relates to their being bound or wrapped: the lower half of the handle is heavily worn, rounded and chipped while the upper is very fresh

11 I have not done any microscopic analysis of this polish, nor do I have plans to do so within the scope of this project. Little microscopic work has been focused on these objects to date, so all my suggestions as to the causes of observed wear are intuitive and not microscopically observed and/or experimentally replicated.
and well-preserved (Figure 3). Many of the daggers show heavy rounding and polishing on the fin-shaped edges of the ‘pommel’ which I am tentatively suggesting is due to their use as strike-a-lights and perhaps contributed to the general wearing visible on the lower part of the handle.

Figure 1: Large Knaufhammeraxe found in Grapperhausen, Kr. Vechta, Niedersachsen, Germany. Photograph © Museum für Natur und Mensch, Oldenburg.

Figure 2: Axe length plotted against distance between shaft-hole and knob-end, showing distinct cluster of long axes with long cylindrical shafts (circled)
I am still developing my thoughts on the connection between these objects and their proposed metal counterparts, but there are already indications that they may not have been as conceptually interchangeable as other authors (e.g. Apel 2001: 245; Brandt 1967) have suggested. At the very least, the choice not to polish off the traces of invasive thinning flakes — and in many cases to invest the time and talent needed to produce patterns of parallel retouch covering blades and handles — distinguishes them visually from smooth, shiny copper and bronze blades. However, more research needs to be done before I can make any conclusive statements. Between 3000 and 1700 BC people chose metal more and more frequently to fill the social and technological roles stone once played (Vandkilde 1996; Edmonds 1995); the research outlined above is one means by which I am attempting to clarify how and why this choice came to be made.

Acknowledgements

I owe a great deal of thanks to the staff at all of the museums and archaeological depots visited in Germany (Schloss Gottorf, Schleswig; Museum für Natur und Mensch, Oldenberg) and the Netherlands (N.A.D., Nuis; Drents Museum, Assen; Overijssel depot, Deventer; R.M.O., Leiden). In particular I wish to thank Kristina Nowak and Professor M. Fansa for arranging permission to publish the Grapperhausen axe and to Dr. Ingrid Ulbricht for the photograph of the Holzdorf dagger.

Bibliography

Southeast Asia is one of the least researched areas of the Pleistocene Old World and current understandings of hunter-gatherer technological adaptations, economic organization and mobility patterns remain remarkably poor. In part, this situation reflects a relative scarcity of well-documented and well-dated Palaeolithic sites. An even greater obstacle to the study of behavioural adaptations in the region, however, has been the characterization of Southeast Asian lithic technology as crude and unchanging, and of little interpretive value. This view has been prevalent in the literature since the inception in the 1940s of the ‘Movius Line’. The Movius line effectively divides the Palaeolithic Old World into two separate Western and Eastern technological zones and is based on the presence of handaxes and prepared core technologies in the West and their general absence in Eastern Asia (Movius 1948). A common explanation for the seemingly crude and static nature of stone tools in Southeast Asia is that there was a greater reliance on bamboo and other organic materials in a tropical environment (Pope 1989), and/or that there was a general lack of high quality stone across large areas of the region which is thought to have constrained the development of more complex lithic technologies (Mellars 2006).

However, despite widespread support of these models and a general acceptance of the Movius Line more generally (Keates 2002; Schick 1994), the credibility of this technological division is increasingly being called into question (Brumm 2007; Pawlik 2004; Yi & Clark 1983). It has been noted, for example, that there is little evidence to support widespread bamboo tool use, especially since large tracts of Pleistocene Southeast Asia consisted of arid savannah rather than tropical rainforest environments (Brumm 2007; Hutterer 1985; Raddatz 2006). Nevertheless, a preoccupation with the differences in technologies east and west of this boundary has distracted from research investigating technological variability in Southeast Asia from its own unique regional perspective (Brumm 2007), a sentiment which has been expressed for other regions in eastern Asia (Chen & Wang 2004; Yi & Clark 1983).