ABSTRACT

Several factors have conspired to deplete the British record of Earlier Upper Palaeolithic occupation and the coeval replacement of Britain's last Neanderthals by early modern humans. These include, most notably, the destructive effect of the Last Glacial Maximum and the early archaeological excavation of cave sites dating to this period. Assemblages known to contain early modern human Aurignacian material are scarce, and therefore the identification of new sites is noteworthy. A lithic artefact in the old collections from Longhole, Gower, confirms it as an Aurignacian site. That artefact and justification of its Aurignacian attribution are detailed here. Technological traits of this artefact match those seen in the larger Aurignacian collection from nearby Paviland. These resemblances are strong evidence that Aurignacian occupation at Longhole was broadly contemporary with an Aurignacian occupation at Paviland.

Keywords: Aurignacian, bladelet technology, Longhole, Paviland, Britain, northern Europe.

THE BRITISH EARLIER UPPER PALAEOLITHIC

Around 40–35,000 \(^{14}\)C BP indigenous European Neanderthals were replaced by incoming modern humans. At present, Neanderthals are generally thought to have created a suite of very early Upper Palaeolithic industries (e.g. Châtelperronian, Uluzzian) (Kozlowski & Otte 2000; Bar-Yosef 2002; Djindjian et al. 2003; Mellars 2004; Zilhão 2006; Mellars & Gravina 2008), perhaps as a result of influence from Aurignacian-bearing modern humans entering Europe from the east (e.g. Mellars 2004). By c.35,000 \(^{14}\)C BP the Aurignacian, certainly made by early modern humans, was present across much of western Europe. Following the Aurignacian in western Europe are several apparently intrusive industries, appearing from c.29,000 \(^{14}\)C BP (Maisiérían, Font-Robertian, Bayacian, Gravettian). Together, these are often referred to as the Early Gravettian (e.g. Djindjian et al. 1999).

In Britain, several occupation events are known between the onset of the Upper Palaeolithic and the Last Glacial Maximum, c.20,000 \(^{14}\)C BP; a period Campbell (1977) termed the “Earlier Upper Palaeolithic”. The first of these occupations is evidenced by characteristic large lithic weapon tips, either ventrally or bi-facially shaped (‘blade-points’ and ‘leaf-points’ respectively), found in small numbers at many findspots and in larger numbers at a handful of sites (Beedings, Paviland, Kent’s Cavern). These artefacts are currently considered to be part of a northern European phenomenon which has in recent years been referred to as the Lincombian-Ranisian-Jerzmanowician (or LRJ: Flas 2002). The timing of the LRJ is still poorly constrained, although it is certainly extant by 38,000 \(^{14}\)C BP (Campbell 1977; Jacobi 2007; Flas 2008). A perceived phylogenetic link with

1 Several recent publications suggested that this very early Upper Palaeolithic may have been authored by modern humans (Bar-Yosef & Bordes 2010; Bordes & Teysandier 2011; Benazzi et al. 2011). This is interesting proposition may make sense archaeologically, creating a neat division between Middle Palaeolithic industries produced by Neanderthals, and Upper Palaeolithic industries created by modern humans.

2 Campbell’s “Earlier Upper Palaeolithic” and “Later Upper Palaeolithic” encapsulates the central feature of the British Upper Palaeolithic: human occupations at the beginning and end of the Upper Palaeolithic bracketed a long period of absence centred on the Last Glacial Maximum. His earlier Upper Palaeolithic corresponds to the Early Upper Palaeolithic and the earliest phases of the Mid-Upper Palaeolithic of continental Europe. When considering British archaeology Campbell’s term certainly remains useful.

1 The British Museum (Prehistory and Europe), Franks House, 56 Orsman Road, London. N1 5QL, England, U.K., rdinnis@thebritishmuseum.ac.uk
Middle Palaeolithic industries also containing leaf-point weapon tips has led most to believe that the LRJ is the last expression of northern European Neanderthals (e.g. Otte 1990; Jacobi 1999; Jöris & Street 2008; Flas 2008; Semal et al. 2009). However it should be noted that there is no clear association between diagnostic human fossils and LRJ material at any site.

A later modern human Recent Aurignacian occupation is known from a small number of lithic and osseous artefacts at a handful of British sites (Figure 1). The most characteristic British Aurignacian lithic artefacts are two types of carinated burin: the *burin busqué* and the Paviland burin (Figure 2). Both are types of bladelet core, used to produce a micro-lithic technology which is a particularly conspicuous part of all Recent Aurignacian assemblages. Schematics of these two core artefact types can be found in Figure 3. Radiocarbon dates from British Aurignacian osseous artefacts, along with comparison of lithic artefacts from Britain with those from well-stratified continental assemblages, suggest an Aurignacian presence in Britain between 33,000 and 31,000 14C BP (Jacobi et al. 2006; Dinnis 2009).

Later still, at c.28,000 14C BP, Britain saw another occupation of early modern humans, referred to either as Early Gravettian or Maisièrian. Stemmed artefacts equivalent to those found at Maisières-Canal in Belgium are known from seven British sites (Jacobi et al. 2010). A consistent series of radiocarbon dates from Maisières-Canal are likely to also date this British material (Jacobi et al. 2010). Britain is then apparently abandoned for a long period around the Last Glacial Maximum, with no known later Gravettian or Solutrean material in British collections.

Overall, archaeological material from the British Earlier Upper Palaeolithic is scarce. Large collections, such as the LRJ assemblage from Beedings and the LRJ/Aurignacian/Gravettian assemblage from Paviland, are exceptions. Most findspots have yielded only one or a small handful of
artefacts. There are numerous reasons for this lack of material, of which the four most significant are:

1. During the time of deteriorating climate before the Last Glacial Maximum, Britain was undoubtedly a region of comparatively peripheral human presence. In fact, it is probable that throughout this time occupations were punctuated by significant periods of human absence (Pettitt 2008; Jacobi & Higham 2011; White & Pettitt 2011). Relative to regions farther south, one would therefore expect a meagre archaeological record.

2. Subsequent to this period, glacial and periglacial geological processes will have destroyed much of the archaeological record originally deposited in the ground (Jacobi 1990; Dinnis 2009 & in press). Archaeology will also have been lost beneath rising Holocene sea levels, particularly to the west of Britain and in the North Sea region (see Figure 1).

3. A significant majority of Earlier Upper Palaeolithic sites in Britain were excavated before or shortly after the turn of the 20th century. While some sites were obviously subjected to some sort of screening during excavation (e.g. the 1912 Sollas campaign at Paviland), these are exceptions. Major collection biases are obvious at many sites. Ffynnon Beuno Cave (north Wales; Figure 1) is a good example of this. Comparison of the six lithic pieces in the extant collection with other sites excavated to modern standards indicates that several hundred pieces, or potentially even more, would have originally been present at the site (Dinnis & Conneller 2011). Recent test-pitting of spoil deposits outside Ffynnon Beuno Cave supports this interpretation, with a further eight lithic artefacts recovered from what is likely to amount to only one or two percent of deposits removed from the cave.

4. During the early excavation of British sites only the most rudimentary stratigraphies were recorded. Frequently no stratigraphy was recorded at all. As a result, different industries are often only recognisable via typological separation of material within mixed assemblages. The methodologies required to select artefacts in this way obviously necessitate the rejection of large numbers of culturally undiagnostic lithic artefacts. This inevitably results in a much diminished corpus of material which can be soundly allocated to each archaeological culture. Furthermore, if during any period of the Earlier Upper Palaeolithic Britain was occupied by hunter-gatherers who produced a generalised Upper Palaeolithic lithic technology — lacking technological idiosyncrasies as recognisable as the Aurignacian index fossils in Figure 2 — the absence of unmixed and well-stratified assemblages means that we would not recognise their occupations at all.

These problems and the resulting overall lack of material obviously make archaeological interpretation of the period difficult. Therefore any additional LRJ, Aurignacian or Gravettian assemblage — be it identified via excavation of completely new sites or by identification of diagnostic material in old assemblages — is significant.

LONGHOLE: SITE DESCRIPTION, EXCAVATION HISTORY, FAUNAL ASSEMBLAGE, PREVIOUS CULTURAL ATTRIBUTION

Longhole lies on the south Gower coast, roughly equidistant between Port Eynon Point to the east and Paviland to the west (Figure 4). The cave is elevated c.50 metres above the high-tide line and faces south across the Bristol Channel to the north Devon coast beyond. The currently exposed length of the cave void is c.15 metres.

Deposits inside Longhole were excavated extensively in 1861 by Colonel Wood, who recovered a lithic industry and a faunal assemblage. The faunal lists of Falconer (1868), and latterly of Garrod (1926) and Allen and Rutter (1948), show that the cave contained material attributable to the Pin Hole Mammalian Assemblage Zone of Marine Isotope Stage 3 (MIS 3), c.60–25,000 years ago (Currant & Jacobi 2001 & 2011). Characteristic MIS 3 taxa in the collection include reindeer, woolly rhino, mammoth and horse. According to Allen and
Rutter (1948), hyaena is a particularly dominant component of the assemblage from Wood’s excavations. Like many British caves, it is likely that Longhole was a hyaena den for at least part of MIS 3.

According to Falconer (1868), also present in Wood’s collections from Longhole are some warmer-adapted species (e.g. straight-tusked elephant). Garrod (1926: 68) and Allen and Rutter (1948) interpreted this as evidence for a mixed age assemblage, and that Wood was either excavating disturbed deposits or that he had failed to recognise stratigraphy at the site. Given the presence of deposits spanning the entirety of the Late Pleistocene and the later part of the Middle Pleistocene in other caves on the south Gower coast (e.g. Minchin Hole, Bacon Hole), the presence of pre-MIS 3 material at Longhole would be unsurprising.

Campbell’s 1969 excavation outside the entrance of Longhole helped to contextualise the material found by Wood. Campbell unearthed a long stratigraphy, which he interpreted as spanning most or all of the Late
Pleistocene (Campbell 1977). Analysis of sediment and pollen from this stratigraphy indicated a major cold phase — reasonably interpreted by Campbell as the Last Glacial Maximum — with archaeological (lithic) material underlying this event in his stratigraphy. This, of course, is consistent with an MIS 3 age for the archaeology from the cave. Identifiable fauna in Campbell’s Earlier Upper Palaeolithic levels A3a/A3b included reindeer and horse (Campbell 1977; Lister 1984), again consistent with an MIS 3 age for lithic material from the site.

At least 23 lithic artefacts are known to come from Longhole: 17 from Wood’s campaign (Campbell 1977) and six from the more recent work of Campbell (pers. obs.). In her synthesis of the British Upper Palaeolithic Garrod (1926: 69) briefly discussed three lithic pieces from Wood’s collection. For Garrod, the presence of a scraper with opposed “angle-burin” helped to narrow the likely culture to which the assemblage belonged. Given what she saw as a lack of Late Upper Palaeolithic material from Gower’s caves she favoured a “Middle or Upper Aurignacian” age for the Longhole lithics. In today’s Upper Palaeolithic taxonomy, this would mean an Aurignacian or Gravettian attribution.

Figure 3. Schematics of bladelet production from a burin busqué (left) and a Paviland burin (right). (Figure: C. Williams).

Figure 4. The location of Longhole and Paviland on the south Gower Coast. (Figure: C. Williams).
Campbell (1977: 145–6) later suggested that Wood’s collection contained a fragment of “leaf-point”, a tool type nowadays assigned to the LRJ. Campbell related this artefact to several of the small flakes he recovered during his own excavations, suggesting that the thickness/breadth ratios of these small flakes may connect them to the manufacture of leaf-points. However, Jacobi (cited in Barton & Collcutt 1986) later contradicted Campbell’s claim for a leaf-point fragment in the lithic assemblage from Wood’s excavations. If the blade fragment figured by Campbell (1977: fig. 97, artefact 6) is that which he believed to be a blade/leaf-point fragment, then Jacobi’s interpretation is correct: the artefact’s ventral modification is as easily explained as taphonomic damage as it is by deliberate shaping. The small flakes recovered by Campbell himself may relate to many different Upper Palaeolithic reduction strategies, and are themselves not a good cultural indicator.

AN AURIGNACIAN CARINATED BURIN FROM LONGHOLE

Amongst the lithic artefacts collected from Longhole by Wood is a blade struck from a nodule of drift flint (Figure 5). Garrod (1926: 69) described the artefact as a “worked angle flake” or “lame de dégagement” (translating as “clearance blade”). Neither term is widely used in the literature, although “lame de dégagement” at least hints at how the blank would now be understood: in current parlance, we would describe it as a crested blade. Perhaps due its deep patina and apparent damage along its margins, Garrod and others overlooked the retouching of the blank on its proximal end (Figure 5). This retouch is deliberate, and the order of these removals allows it to be recognised as a bladelet core carinated burin.

The technology of bladelet production using carinated burin methods is now well-documented (e.g. see Le Brun Ricalens et al. 2005; Flas et al. 2006; Dinnis 2008). The carinated burin technique allows the systematic production of small, micro-lithic bladelets from large and thick blades or elongated flakes. The initial step is the creation of the platform from which bladelets will be detached. This is achieved via the detachment of a burin spall, creating a burin scar which will serve as the bladelet débitage platform. Bladelets are then struck from this platform, from one side to the other across the width of the blank. During the reduction of the core, the angle between the burin-scar bladelet débitage platform and the bladelet débitage surface may become problematic. If so, a new burin removal can be used to renew the bladelet débitage platform, thus allowing detachment of bladelets to continue. A schematic of this process for the best understood form of carinated burin — the burin busqué — can be found in Figure 3.

Evidence for this same process can be seen on the artefact from Longhole in Figure 5. A burin removal has been struck from the proximal end of the blank, on its left hand side and oriented slightly towards its dorsal surface. The proximal portion of this burin scar has subsequently been obliterated by another short burin removal, struck from roughly the same place as the first. Therefore, two overlapping burin scars are now visible on the blank: the longer burin scar overlain by the subsequent shorter scar. (In Figure 5 the location of these scars is marked with an asterisk, and two arrows indicate the direction from which they were struck.) On the right side of the blank is a series of five short removal scars, struck from left to right. (In Figure 5 the location of these scars is marked with a cross, with five arrows indicating their position). These scars have been truncated at their proximal end by the latter of the two burin removals. The first burin scar is therefore the creation of the bladelet débitage platform. From this, short bladelet removals have been struck, from left to right across the blank. Subsequently, the second burin removal — presumably a failed attempt to renew the bladelet core — has obliterated a part of the bladelet débitage surface. This was apparently the last removal prior to the artefact’s discard.

Several aspects of the artefact from Longhole are worthy of attention, and all help to confirm its Recent Aurignacian attribution. First, carinated burins are particularly characteristic of Recent Aurignacian assemblages. Early Aurignacian assemblages, in contrast, tend to include carinated scrapers, artefacts which are also found in low levels in many other periods of the Upper Palaeolithic (Demars & Laurent 1992).
Secondly, it can be noted that the blank chosen for the Longhole carinated burin is consistent with blanks used for bladelet production from carinated burins at other Recent Aurignacian sites. The débitage from initial shaping and flaking of large blade cores was often selected, and particularly thick laminar flakes with triangular cross section (e.g. see Flas et al. 2006; Dinnis 2009). Furthermore, in the Recent Aurignacian assemblage from Maisières Canal (Atelier de Taille de la Berge Nord-Est area) in Belgium, as at Longhole, a crested blade was exploited in this way (Flas et al. 2006). In Recent Aurignacian carinated burin assemblages such as Abri Pataud level 7, Gohaud (Loire-Atlantique, France) and Maisières Canal the bladelet débitage areas of these blanks have preferentially been created on the proximal end of the blank (Dinnis 2009). The bladelet débitage surface of the carinated burin from Longhole has also been created proximally. Thirdly, the carinated burin from Longhole shares several technological features with artefacts in the large Recent Aurignacian assemblage from nearby Paviland. The first of these is the application of the final burin removal in an unsuccessful attempt to continue reducing the core (Figure 5). The same short but invasive removal can be found on the burin busqué from Paviland in Figure 6 (marked with an asterisk). Elsewhere, other approaches to attempted prolongation of the useable life of carinated burins can be seen. One example is in the Recent Aurignacian assemblage from Gohaud. There, a series of delicate dorsal-to-

![Figure 5. Aurignacian carinated burin from Longhole. See text for description. The two burin scars on the left, discussed in the text, are emphasised. (Illustration by C. Williams).](image-url)
ventral removals have been applied to subtly modify the proximal part of burin-scar bladelet débitage platforms, instead of attempting to completely renew the area with new burin removals (Allard 1978; Dinnis 2009). Although a relatively simple technological strategy, the shared (and failed) approach to renewal of carinated burins at Longhole and Paviland is not found universally at Aurignacian sites. It is therefore at least potentially significant.

A second, shared technological characteristic is of more obvious significance. As can be seen in Figures 2 and 3, one difference between burins busqués and Paviland burins – the two defining artefact types of the British Aurignacian – is the side of the blank from which bladelets are detached. Roughly 90% of western European burins busqués are aligned with their bladelet débitage platform to the right, and with bladelets struck from right to left across the blank (Dinnis 2008 & 2009). Conversely, bladelets have been struck from left to right on all known examples of Paviland burin (Dinnis 2009; contra Dinnis 2008). The unusual inclination towards left-to-right detachment of bladelets is a notable feature of the Recent Aurignacian of Britain and Belgium (Dinnis 2008, 2009 & in press). This preference is most conspicuous in the collection from Paviland, which contains the largest assemblage of Paviland burins currently known.

While the morphology of the Longhole carinated burin does not allow it to be described as a Paviland burin, it also exhibits a left-to-right oriented bladelet débitage surface, and is therefore reminiscent of bladelet production in the Paviland Aurignacian. The geographical proximity of the two sites —

![Figure 6. Burin busqué from Paviland. The short burin removal - the last removal at the burin bit and interpreted as a failed attempt to renew the bladelet core débitage platform – is indicated with an asterisk and is emphasised. (Illustration by C. Williams).](image-url)
<table>
<thead>
<tr>
<th>Site/level</th>
<th>N</th>
<th>Mean (mm)</th>
<th>SD (mm)</th>
<th>Range (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abri Pataud 7</td>
<td>70</td>
<td>13.5</td>
<td>3.95</td>
<td>23</td>
</tr>
<tr>
<td>Abri Pataud 6</td>
<td>24</td>
<td>17.4</td>
<td>4.13</td>
<td>14</td>
</tr>
<tr>
<td>Les Vachons</td>
<td>40</td>
<td>17.4</td>
<td>5.55</td>
<td>19</td>
</tr>
<tr>
<td>Gohaud</td>
<td>17</td>
<td>13.1</td>
<td>2.82</td>
<td>11</td>
</tr>
<tr>
<td>Spy Cave</td>
<td>15</td>
<td>14.1</td>
<td>3.64</td>
<td>14</td>
</tr>
</tbody>
</table>

Table 1. Inferred bladelet length for burin busqué bladelet cores from western European Recent Aurignacian assemblages. (“Inferred bladelet length” = maximum length of the bladelet débitage surface on each core, used as a proxy for the length of bladelets detached. Where final stages of working have demonstrably altered the morphology of burin busqué bladelet débitage surfaces, cases have been excluded). The assemblage from Abri Pataud level 6 includes material from the extension area and from level 7 upper (see Chiotti 2005). The assemblage from Les Vachons includes material from Abri 1 and Abri 2. For further details see Dinnis (2009).

When considered alongside the complete lack of carinated burins with right-to-left aligned bladelet débitage surfaces at Longhole and their relative rarity at Paviland – means that we can safely interpret this similarity as culturally significant. It is therefore likely that Aurignacian occupation at Longhole was broadly contemporary with an Aurignacian occupation at Paviland.

Finally, we can also note that the micro-lithic technology produced from the Longhole carinated burin would have been extremely small. Micro-lithic technologies are known throughout the European Upper Palaeolithic and Mesolithic (Demars & Laurent 1992).

However, it is in Recent Aurignacian assemblages that systematic production of bladelets ≤15mm can be found (Table 1). At Paviland, the mean inferred length of bladelets struck from several bladelet core artefact types is 12.6mm ($n=38$; SD: 2.92mm; range: 13mm). This mean value is close to or less than those for the continental European Recent Aurignacian burin busqué assemblages detailed in Table 1. (See caption for Table 1 for description of “inferred bladelet length”). With reference to the surviving part of its bladelet débitage surface and the angle and position of its penultimate burin scar, bladelets detached from the carinated burin from Longhole are extremely unlikely to have exceeded 15mm in length, and were in likelihood ≤10mm. The shortness of bladelet débitage from the Longhole carinated burin therefore recalls bladelet production in the Paviland Aurignacian.

Although extremely rare, artefacts that can reasonably be described as bladelet core carinated burins can be found in non-Aurignacian British assemblages, for example that figured by Armstrong (1933, 338) from the Mesolithic assemblage from Sheffield’s Hill, Lincolnshire. However, these rare examples have been used to create bladelets larger than those favoured in the Recent Aurignacian, and certainly much larger than the bladelets produced from the carinated burin from Longhole. Indeed, micro-lithic technologies of comparable size and production technique to those at Paviland and Longhole are not known from any other period of British prehistory.

When considered together, the small size of the bladelets detached from the carinated burin from Longhole, shared technological characteristics with Recent Aurignacian material from nearby Paviland, and the MIS 3 age of archaeology from the cave make the Aurignacian attribution of this artefact certain.

DISCUSSION: THE SIGNIFICANCE OF LONGHOLE

The national importance of Gower’s caves for understanding the period between the last interglacial (Ipswichian/Eemian: c.130,000 years ago) and the Last Glacial Maximum is well-documented. In addition to key faunal assemblages (Currant & Jacobi 2001 &2011), caves on Gower have also yielded Britain’s only Upper Palaeolithic decorated burial (Paviland), her most abundant Aurignacian lithic assemblage (Paviland), her most
abundant Gravettian lithic assemblage (Cat Hole) and her second most abundant LRJ assemblage (Paviland).

Despite this obvious importance — and as described above — interpretation of archaeological collections from these caves is often hindered by their early excavation. In recent decades researchers in Britain and abroad have returned to the scenes of early cave excavations, in order that material previously missed or discarded as unimportant can be retrieved from spoil deposits (e.g. Pelegrin & O’Farrell 2005; Pettitt et al. 2009).

In addition to pieces of worked osseous material and symbolic cultural material such as shell beads, small pierced teeth etc., these spoil deposits often contain a quantity of lithic material. Although these lithics are generally small, they are nonetheless culturally informative, and therefore archaeologically valuable.

Sadly, such an approach is impossible at Paviland; by far Britain’s most abundant Earlier Upper Palaeolithic site, and one of northern Europe’s most important Aurignacian sites. By the time Sollas excavated the cave in 1912 the sea had already removed all of its external deposits, and likely much of its internal deposits. Spoil from Sollas’ work was presumably placed directly into the Bristol Channel. In contrast, most if not all of the spoil deposits at Longhole are still present in and around the cave. Its recognition as an Aurignacian site — and more particularly as an Aurignacian site with cultural affinity to Paviland — is therefore especially noteworthy: this site alone offers the opportunity to retrieve those important smaller components of the Gower Aurignacian, many of which have been lost forever from Paviland.

There can be little doubt that much archaeological material was overlooked during initial excavation at Longhole. Lithic pieces in Wood’s collection are uniformly large, demonstrating a significant collection bias. For the eight lithics housed at the British Museum, mean maximum length is 52mm (range: 34–69.5mm). This measurement is similar to the heavily biased extant museum collection from Ffynnon Beuno Cave, with a mean maximum length of 61mm (range: 28.5 – 127.5 mm). We can contrast these with measurements of the Paviland collection by Swainston and Brookes (2000, 38, fig. 2.11), which show that more than half of the total number of lithics are 35mm or smaller in length. The collection of material at Longhole by Wood in 1861 was therefore apparently similar to that by Hicks at Ffynnon Beuno in the 1880s, where spoil deposits have recently been shown to contain Earlier Upper Palaeolithic archaeology. One would thus expect a quantity of archaeological material to still be present at Longhole.

This paper is intended as the initial stage of a broader consideration of Longhole. This will comprise a study of extant collections from the site, as well as new fieldwork with the aim of testing Wood’s spoil deposits for archaeological material. Hopefully new insights into the stone-working techniques of Britain’s earliest modern human inhabitants will follow in due course.

CONCLUSIONS

The record of Earlier Upper Palaeolithic occupation of Britain is relatively sparse, due in part to the peripheral position of Britain during the Late Pleistocene, and in part to powerful geological forces erasing archaeological material from large areas. The sparseness of the record has subsequently been compounded by the early excavation of cave sites and the inevitable loss of archaeological information. Our knowledge of late Neanderthal and early modern human occupations is therefore limited. As a consequence, the identification of new sites is particularly important.

Long recognised as Earlier Upper Palaeolithic, the lithic assemblage from Longhole, Gower, has previously been considered to belong to the LRJ, to the Aurignacian/Gravettian, or to contain no culturally diagnostic elements. The bladelet core carinated burin described here, collected during early excavations at the site, is undoubtedly Aurignacian. At least a proportion of the lithic assemblage from Longhole is therefore Aurignacian, the archaeological culture generally regarded as the signature of Britain’s first modern human occupants.

3 The Paviland collection is biased towards larger pieces, as evidenced by the prevalence of exhausted Aurignacian bladelet cores but the lack of the small bladelets they were used to produce (Dinnis 2008).
This artefact exhibits technological traits consistent with its attribution to the Recent Aurignacian, and it is therefore accordant with other Aurignacian material from Britain. More particularly, the left-to-right alignment of its bladelet débitage surface, unusual in western European terms, recalls the large Aurignacian assemblage from nearby Paviland. Furthermore, the bladelets produced at both sites were small even by Recent Aurignacian standards. These shared technological traits are sufficient reason to believe that Aurignacian occupation at Longhole was broadly contemporary with an Aurignacian occupation at Paviland. Unlike at Paviland, spoil from the early excavation of Longhole is still present at the site. This opens up the possibility of testing spoil deposits for material inevitably missed during excavation, and in doing so adding to the corpus of material available to understand early modern human occupation of Britain.

ACKNOWLEDGEMENTS

Very many thanks to Elizabeth Walker (NMW) for her help with this research. Thanks are also due to Craig Williams for the schematics in Figure 3, the map in Figure 4 and the lithic illustrations in Figures 5 and 6, and to Silvia Bello for the map in Figure 1. I am also very grateful to Natasha Reynolds for her help with editing, and for willingly allowing me to bore her rigid with more than one unnecessarily animated monologue regarding the piece of stone in Figure 5. The manuscript was also improved thanks to the thoughtful comments of two reviewers. Needless to say, these colleagues may or may not agree with the conclusions reached here. This work was made possible thanks to the Leverhulme Trust funded Ancient Human Occupation of Britain project.

REFERENCES

Dinnis, R. In Press. The Paviland burin, the burin busqué and Aurignacian occupation of Britain. Anthropologica et Praehistorica.

Conference paper given at AHOB 3 workshop, Queen Mary University of London, May 2011.

