BOUCHER DE PERTHES: PIONEER OF PALAEOLITHIC PREHISTORY

J.A.J. Gowlett

School of Archaeology, Classics and Egyptology (SACE), University of Liverpool, Liverpool, L69 3GS, UK.
Contact email: gowlett@liv.ac.uk

ABSTRACT

Boucher de Perthes (1788–1868) is known as the ‘father of prehistory’. For many years a customs official at Abbeville in northern France, he pioneered the archaeological investigation of the river Somme. Foremost a ‘man of letters’, and luminary of the local scientific society, Boucher de Perthes wrote on many subjects, taking an idiosyncratic view of the ‘Creation’. But his conviction that hundreds of centuries would be just an instant to the Almighty, and that Noah who survived the flood started his life before it, were great aids to Boucher in accepting a long human timescale. His investigations in pits around Abbeville led to the discovery of flint artefacts at great depth in the gravels, especially at Menchecourt. Boucher’s publications of the discoveries in the 1840s were largely ignored or ridiculed, but from 1858 to 1860 he was able to convey his findings to a group of English scientists, including Falconer, Prestwich, Evans, and Lyell.

Keywords: de Perthes, Abbeville, palaeolith, handaxe, creation, antiquity of man

INTRODUCTION

It is well known that Boucher de Perthes discovered some of the first known early stone tools in gravels of the Somme river near Abbeville and Amiens. He is credited as the ‘Father of Prehistory’, and his pioneering work is fittingly celebrated 150 years afterwards.

The reality is that we tend to fit Boucher as an icon in our origins stories. He fits the bill: he works painstakingly, is long disregarded, even ridiculed. His work is eventually discovered and verified by English geologists — just in time to be celebrated by the new and all-embracing idea of Darwinian evolution. In this evolutionary liberation, it is taken up as key evidence of human antiquity.

It plays its part in counteracting the developing challenge of creationism in later years.

There is much truth here, but also a hint of rearrangement after the events. My aim in this piece is to set Boucher de Perthes in the ideas of his own period, in the context of barely-emerging evolutionary thought, both in natural history and geology — that is, in the periods before him rather than after him. The struggle is to understand the period in its own terms. That is hard because we are so completely enveloped now in the evolutionary paradigm, that we scarcely know how to discard it, and we struggle to recapture the earlier picture in which other ideas ruled.
In this exploration, first let us outline Boucher de Perthes, the bald facts; then explore the scientific context of his work.

BOUCHER — THE BIOGRAPHICAL OUTLINE

Here are the bare bones of Boucher’s life (much as given in many encyclopaedias: Boucher did not feature in the 9th edition of the Encyclopaedia Britannica, but appears in the new volumes added in 1902). He was born on 10th September 1788 (the autumn of a winter of discontent in which the French revolution was brewing) at Rethel in the French Ardennes. The eldest son of Jules Armand Guillaume Boucher de Crèvecoeur and Etienne-Jeanne-Marie-de Perthes, he combined their two moderately long names to make a very long one (Jacques Boucher de Crèvecoeur de Perthes). The older Boucher was a customs officer, and botanist. Reputedly the young Boucher aimed for a life at sea, but his aspirations were ‘quenched’ by the age of thirteen, following a stormy voyage in the English Channel. He too entered government employment as a customs officer, in 1802 (by now the era of Napoleon). His duties took him to Italy for several years — a vital broadening of his young experience, which included personal visits to Rome and Naples (Mallet 1997). He returned in 1811, undertook a special mission through Venice and central Europe (Mallet 1997), passed through various promotions, and in 1825 succeeded his father at Abbeville — a setting crucial to our account, and of course an important customs base, especially of textiles, jewellery and glass. Boucher stayed in Abbeville for the rest of his working life, retiring there in 1853, and eventually dying in Amiens in his eightieth year. Boucher was not just a customs officer and archaeologist, but probably foremost, in his own view, a man of letters. He was the author of several tragedies, two works of fiction, and a number of other books on economic, philanthropic and philosophical issues. His leisure, of course, was largely spent on his archaeology, especially in later years: “By his collections of flints gathered in Europe, Asia and Africa, and by his monumental work *Antiquités celtiques et antédiluviennes: Mémoirs sur l’industrie primitive et les arts à leur origine* (Paris 1847, 1857, 1864), he is generally regarded as the first to establish the presence of man in the Quaternary period” (Encyclopaedia Britannica 10th Ed. 1902, Vol. 26: 321; cf. also Bowler 1986; Breuil 1945; Broca 1877, cited in Thompson 1878). (Lyell, who named most divisions of the Tertiary, used merely ‘post-Tertiary’ rather than ‘Quaternary’ (Lyell 1863), but for Lubbock (1865) it was permissible to talk of Quaternary fauna.)

Boucher’s initial work with early artefacts met with little approval, until the famed visit of English geologists in 1859 pronounced in his favour (see below, and Lamdin-Whymark, and Pope & Roberts, this volume). In the meantime publication of Darwin’s *Origin of species* transformed everything. In 1863 and 1864 the finds of flints seemed to be capped by the discovery of human jawbones at the quarry of Moulin-Quignon, near Abbeville. Doubts arose and continued, but in 1864 there came recognition too: Boucher and Quatrefages, his champion, were made officers of the Legion of Honour. In retirement Boucher remained highly active, making a number of visits abroad.

What do we learn from this potted biography? There are a few key points:

- Boucher’s father was a botanist, a scholar as well as a member of the minor gentry.
- They operated within a strong local scientific society, the Société d’Emulation (referred to by Breuil as the Society ‘Polymathique’).
- Italy, the destination of everyone’s European grand tour, though fragmented, was partly occupied by the French.
The strong comparative aspect of Boucher’s interests is broadly seen in contemporary studies, echoing for example Cuvier’s foundation of comparative anatomy.

EIGHTEENTH CENTURY EXPLORATIONS...NINETEENTH CENTURY WORLDS

Boucher de Perthes was a child of the eighteenth century, and an inheritor of its science. In a curious way, the eighteenth century often appears a more modern time than the nineteenth century. Its books frequently have a modern tone of rational exploration, of a world then far less well known, but opening up in all kinds of exciting ways. All round was a spirit of exploration of the natural world almost untrammelled by religious restriction. Events were stimulated by world exploration, shaping new views of human societies. What were the major ideas in this pre-evolutionary epoch? Above all the watchword was ‘Nature’. Scholars of the time combine ideas of classical philosophy, of biblical influence, and new thinking, but nearly always, in any discipline, they are seeking to understand a ‘nature’ that must be explored and defined. Nor are they restricted to one discipline in this (Pantin 1968). The interconnections are legion, and to a large degree the main figures of eighteenth and early nineteenth century natural history knew one another, or one another’s work. They collaborated as they analysed and classified the vast numbers of specimens and species.

Following the Enlightenment (*Aufklärung*) of the earlier 18th century, a flowering of science and thought came especially in the period 1760–1840. In this there was a constant interaction of old and new ideas. All the way back to Plato, there was the tension between plenitude, continuity and separation. Species had to be unequivocally separate, to provide the necessary range of forms (plenitude). Amongst the most important of the old ideas was *The Great Chain of Being* (Lovejoy 1936). This spelled out the necessity of each thing having its place as a link in the chain. For some everything was made for humankind (‘Man’), but for others this fullness showed the relative insignificance of the human place. They include Immanuel Kant, the most influential of philosophers, who shows the principle of plenitude when, in his treatise on the solar system, he fills the outer planets with inhabitants — a fantasy with a reason (cf. Boucher de Perthes’ *Création*, below). The scientist-philosopher, he not only reconciles the strong animosity between the currents of rationalism and empiricism, but reintroduces an idea of evolution in cosmology. Alongside the philosophy of Kant, there was also a revolution in social appreciation. Rousseau launched the romantic movement. Paine wrote *The rights of man* (Paine 1791). Their thinking swirled around the American revolution and paved the way to the French revolution.

Here too we have the voyages of Captain Cook, the exploration of the Pacific, the discovery of Australia, and a growing awareness of the variety of humankind (Rhys 1999). In his curious study of the effects of diet on the habits of man, Falconer (1781) ranges widely through the continents. In Astronomy Herschel used far more powerful telescopes, revealing a larger universe (Hoskin 1963). In these formative times there appears to have been more commonality of thought than we now easily recognise. There were small numbers of universities and scholars, who in addition to and beyond the historical role of Latin, enjoyed a facility of exchange of knowledge in French, English, German and Italian, and who wrote prolifically both in correspondence and for publication. Social worlds, natural worlds, geological worlds, were far less separate than now, for the modern disciplines scarcely existed. It was perhaps natural that this multidimensional expansion of knowledge should struggle out into evolutionary thought. But there were
few prompts towards this, and a long time scale had to be constructed before it was likely to happen. The short timescale was in part a dogma of the church, but also simply the state of current knowledge.

In natural history, a continental dominance was marked out by Buffon, Linnaeus, Cuvier and Lamarck. The last two were known personally to Boucher through his father. Buffon died in the year that Boucher was born (1788). Best known for his *Histoire naturelle*, which was produced in Paris in 44 volumes between 1749 and 1804 (the later ones edited by Daubenton and de Lacépède), he also published in 1778 his *Epoques de la nature*, suggesting an appreciation of the problems of time. He too shows the link with England through his fellowship of the Royal Society — a connection with Needham and Banks, its influential secretaries (Andrade 1960).

Lamarck (1744–1829), whose most distinguished work was on the invertebrates, clearly played the most crucial role in setting out evolutionary principles, as summarised in his *Histoire naturelle des animaux sans vertèbres* (1815):

1. Life by its proper forces tends continually to increase the volume of every body possessing it, and to enlarge its parts, up to a limit which it brings about.
2. The production of a new organ in an animal body results from the supervention of a new want continuing to make itself felt, and a new movement which this want gives birth to and encourages.
3. The development of organs and their force of action are constantly in ratio to the employment of those organs.
4. All which has been acquired, and laid down, or changed in the organisation of individuals in the course of their life is conserved by generation and transmitted to the new individuals which proceed from those which have undergone those changes.

Later critiques tend to damn Lamarck for the errors of (4) (Lamarckism), but they perhaps miss the point that like others of the period he strove for a global scheme, but that he was far ahead of them in his appreciation of time and the dynamics of biological change.

I lean to Lamarck’s ‘rival’, Cuvier, in this story, because his huge knowledge was spread across the plant and animal kingdoms, and extended to the first proper comparative analysis. From the bones frequently sent to him, Cuvier became adroit at matching fossil and modern records. Cuvier has become depicted as a reactionary figure, preoccupied with politics, and who stood in the way of evolutionary thought and the acceptance of Boucher’s work, but this is a stereotypic view. Actual reading of Cuvier’s major work shows that he was sifting huge quantities of data extremely carefully (Rudwick 1997). Indeed, he knew more occurrences of fossil mammoths across Europe and Asia than most of us are aware of today. He simply could not see in this evidence of evolutionary change. His catastrophism is not linked to the flood — like Buffon he accepted numbers of geological epoques. He saw water-lain sedimentary rocks that are dominant in the record as evidence of multiple past floods. To paraphrase from the French: ‘we once thought just of the flood — but most sediments show water, and there must have been numbers of similar cataclysms’. Cuvier gives a modern example, noting how distinct the marsupial fauna of Australia is. Suppose, it were eliminated in a catastrophe; then, probably, other animals from S.E. Asia would colonise the area. But it would not mean that these animals had evolved from the marsupials.

The celebrated English geologist Lyell — a protagonist in the story of Boucher — confirms the more sympathetic view of Cuvier. Lyell expresses his high regard in an early series of lectures given in London in...
1831–1833 (Rudwick 1975), noting Cuvier’s caution, and stating that he, Cuvier, by comparisons with other scientists would have very little ever to recant in the light of new knowledge. Then, Lyell’s famous *Principles of Geology* (1833) brings together the evidence across a great breadth that echoes Cuvier. There is much overlap in the interests of Lyell and Cuvier in the exploration of all the earth and life sciences (as we now know them). Again, Lyell inherits a tradition, shaped already by Hutton (e.g. 1785), Buckland, and others. He is a young man, assembling information across a great breadth. He shows continuity with Cuvier, and like him was not (at this stage) convinced by any evidence of great human antiquity.

As two grand figures of the French academies, Cuvier and Lamarck debated evolution in the early 1800s, though it was the debate with another scholar, Geoffroy, which brought matters to a head (Appel 1987). What then was the dominant paradigm that confronted Boucher de Perthes, the provincial scholar of Abbeville, as a mature man in the 1830s? Rationalism, empiricism, a free spirit of exploration, freedom to speculate and make new syntheses, all somewhat hindered by old ideas. Important here was the short timescale which goes back to Newton. As Shorr (1935: 431) notes “There was still the question of the antiquity of that age — of the antiquity of man — to be answered, before the primitive world could come clearly into view”. For Shorr the rationalists of the eighteenth century had failed to grapple with this problem, not for want of scientific spirit, but because they were not quite free from a residual ‘devotion to theology.’ Buffon epitomises the case: “Had it not been for his allegiance to Biblical cosmology, there is no doubt that his researches would have led him to the belief in the high antiquity of man” (Shorr 1935: 431). True, in Denmark Thomsen and Worsaae were establishing the existence of a stone age, bolstered by the knowledge of stone tools that came in from the new voyages, but that in itself did not give time depth (Daniel 1962; Shorr 1935; Thomsen 1836). Yet times were changing. Laplace the physicist, who had written a further evolutionary synthesis of the solar system (*Système du Monde*: 1796), was even teased by Napoleon in 1804 for omitting all mention of God in his *Mécanique Céleste* (Dampier 1942). And above all the foundations of geology were coming together, shaped by Hutton, Cuvier and indeed Lamarck, then Lyell. Evolution of the cosmos was in the air, the long timescale they had in the rocks. The sticking point was human antiquity — humankind was still the last arrival.

BACK TO BOUCHER: THE STORY IN DETAIL

We have seen that Boucher de Perthes was a competent public servant, not thrilled by his profession, but as a man of letters engrossed in its role. He wrote more than 8 volumes on the subject in his *Sous dix rois* (had he been English, it would have been ‘serving under three kings and a queen’ but in France, he had two Napoleons, as well as a brace of Bourbons, and ‘le peuple souverain’ more than twice). For us Boucher seems insulated from these turbulent times, but he like other scholars benefited from Napoleon’s investment in academic research, and in the 1840s was just 60 kilometres from the place of Napoleon III’s imprisonment at Ham (he too a man of letters, writing on everything from artillery to constitution: Bresler 1999).

On his return to Abbeville from his missions abroad, Boucher de Perthes was installed in an office in the Hotel de Cépy, a fine town house which his father had acquired in 1803. The house became the centre of their collections, filled with botanic specimens, porcelain and statues before it ever saw any stone tools. Boucher inherited the house in 1844, and the collections increased steadily up to his own death in 1868.
A customs officer then cut a fine figure, with a distinguished uniform (Figure 1). It was a time when official functions were developing (Bosher 1971), and Boucher’s succession to his father was not a run of the mill nepotism. Earlier, it had been normal for an official to operate autonomously, with his own house and secretariat. Boucher was the exception in carrying on in this tradition, and in his later years often had problems with the higher authorities, perhaps a reflection of his idiosyncrasies.

Boucher was “no naturalist, but surrounded in the Societe Polymathique of Abbeville, by good naturalists” (Breuil 1945: 23). Initially the artefacts came to him, and the remarkable thing is that their ages were sorted out to any degree, in view of the total absence of dating techniques. They were thrown up by the dredger along the Somme canal. Out of the peats came flints, bones, and a Neolithic polished axe hafted in deer antler. According to Breuil, his friend Picard regarded these as Celtic, and encouraged Boucher to take up their study, presumably because he had the time and resources to do so. From 1835 he was collecting, from 1837 the museum was buying specimens.

The early years

Sadly Picard died young — but possibly it was this death that flung Boucher himself much further into his archaeological research. Although Boucher put all his efforts into the problem from 1837 (Breuil 1945; Lyell 1863 mentions the key date as 1841), it seems to have taken several years for his later views to take shape. There is no
apparent trace of them in his ‘Création’ of 1838–46 (Cohen 1997; Pautrat 1997), but he emphasises the importance of his exposure to the direct evidence in the field: “Dès ce moment, J’y entrevoyais une nouvelle page d’histoire” (Cleyet-Merle 1997: 14).

The first finds presented the challenge of disentangling different periods. Fairly, Boucher was interested in all. Lubbock notes that he may have found remains of ‘lake dwellings’ on the Swiss model (Avebury 1900, Lubbock 1865). The important distinction, in Boucher’s terminology, was between the diluvium — the peats up to 10m thick representing the Holocene — and older deposits. These sands and gravels were for Boucher the ‘antediluvium’. His first find of an artefact in these came from a quarry at Menchecourt, just north-west of Abbeville (Figure 2), in 1841 (Avebury 1900). Others were found in subsequent years, “especially during the formation of the Champs de Mars at Abbeville, where a large quantity of gravel was moved and many of the so-called ‘hatchets’ were discovered” (Avebury 1900: 319). Repairs to the fortifications of Abbeville, and new building, occasioned much of the digging (Lyell 1863). Collection took place predominantly in the winter, when the quarries were more active, hence few visitors saw the workings.

Figure 2: An old pit at Menchecourt. View facing east into Abbeville along the Menchecourt road, which borders the Somme floodplain. The land slopes up left towards the high terrace and chalk ridge. The pit is bordered by the higher trees. [Photograph by the author, 2009]

Rigollot

Boucher’s first publication in 1846, Mémoirs sur l’industrie primitive, was based on readings to the Société d’Emulation made since 1836. In 1847 he changed the title, to add to its impact. This was the beginning of rejection: his work was either ignored or ridiculed. We might note that Cuvier and Lamarck were gone — it was their protégés in Paris who were immovable. In 1853, however, Boucher prevailed on the sceptical Dr Rigollot of Amiens to view his collections. Rigollot had published a memoir on the Somme mammalian fossils as early as 1819. By 1855 he had found numerous flint artefacts buried at least 3m down in ancient gravels at St Acheul, in terraces of the Avre south-east of Amiens, and was thus a sound professional convert. He too was disbelieved.

The English

In 1858 Boucher de Perthes received a visit from Falconer. After pioneering research on the fossils of the Siwaliks, Hugh Falconer, MD FRS, had returned from India in 1855, and spent the rest of his life making a comparative study of fossils in Europe. He
had studied natural history at Aberdeen, and medicine at Edinburgh. It was Falconer’s trip which led to the famed visits of 1859 onwards by the English geologists and archaeologists, Evans, Lubbock, Prestwich and Lyell. Lyell (1863) makes plain that he undertook independent diggings. They may have injected a new rigorousness into the work, for Boucher de Perthes’ one published section, of Menchecourt, was undertaken in 1860, and is assiduously labelled layer by layer. The broad acceptance now gained by the finds (Gamble & Kruszynski 2009) was of course complemented and confirmed by the burst of evolutionary anthropology unleashed by the Darwinian revolution (Piggott 1959).

The Moulin Quignon affair

Yet something was still missing — the human remains themselves. Surely, if early humans existed, their remains should be found. It was a matter that had greatly exercised Cuvier, who discredited the ‘giants’ as elephants, and had nothing left. There was no clear appreciation of taphonomic factors, though Lyell was well aware of the issues (for instance, his discussion of porcupine gnawing: Lyell 1863: 510). The need was so compelling that Boucher compounded an earlier error (as we see it) by offering large sums of money to anyone who could find early remains. Already that approach had led to the fabrication of many fake flint implements, as was rapidly appreciated by the English scholars (Tylor 1863). Now a human jaw was found, apparently in situ, at Moulin Quignon, which Lyell recognised to be a high terrace site. Although Boucher de Perthes accepted the find enthusiastically, and later published extensively on it in the final of his three volumes on the Somme antiquities, others were unconvinced from the start. A few days after the discovery in March 1863, Evans, Prestwich and Tylor visited “and observed circumstances which led us to fear that a deception had been practised by the quarrymen” (Tylor 1863: 167). It is an account all too reminiscent of what was to come at Piltdown, a site which could have benefited from a visit by comparably astute geologists. Meanwhile, Boucher de Perthes remained convinced, unable to doubt his subordinates, and perhaps more easily fooled than in his earlier years, when he had rejected many frauds.

Field Research — the immediate postscript

By now Boucher de Perthes was an old man, and the baton had already passed on (Cleyet-Merle 1997: 18). Lyell shows, as one might expect, a much more advanced grasp of the stratigraphy, and a more strategic approach to exploration. He details his new work, especially in the Montiers region between Abbeville and Amiens, at length (Lyell 1863: 132–147). He confirms the co-existence of large mammals, especially elephants, and human artefacts. He tackles the absence of human bone, and observes that it is “a new and emphatic illustration of the extreme imperfection of the geological record” (1863: 145).

THE BREAKTHROUGH

The key issue for us is that, long before Darwinism was in the air, there was some great conversion or transformation. Boucher de Perthes seemingly passed quite suddenly from being a local collector, operating within the normal framework, to one who made — perhaps without altogether realising it — a major paradigm shift. How did this happen?

Part of the story may be his idiosyncrasy. In later life, he expressed three regrets — his failure to become married; his failure to gain a position in Paris; and his failure to have a piece performed on stage. He smacks more than a little of the naïve enthusiast. Each morning he zips out for a dip in the Somme; he plugs through the dull office work during the morning; then he indulges fully in all his cultural activities through the rest of the day.
He holds court in the Société d'Emulation — rejected by the grand Academy of Paris, he reigns centrally in this one, funding activities by his philanthropy, surrounded by loyal helpers.

Breuil (1945) suggests that Boucher was helped by his enthusiasm for an erroneous idea. For Cuvier and all the others human history was simply the recent period after the flood, represented locally by the Somme peats. But in Boucher’s reasoning Noah survived the flood — so by definition there were humans before the flood (the bible gives us a good list of them), so surely they could be found. Nor is the timescale a problem, for God (in whom Boucher certainly believes) would take a thousand centuries as no more than an instant in our eyes (Boucher de Perthes 1864).

Possibly the ideas of Thomsen (1836) were another influence — Thomsen (like Boucher born in 1788) clearly expressed the evidence for a separate stone age. Boucher himself gives us other insights. The reader will be aware that other work was taking place in caves, for example by Tournal of Montpellier, Schmerling at Engis in Belgium, and Buckland in Britain (Buckland 1820, 1823; Lyell 1863; Shorr 1935: 433). Boucher shows that he was well aware of the caves from an early age. In 1805 he was at Marseille with M. Brack, brother-in-law of Cuvier, and friend of his father, and collected in the Grotte Roland. In 1810, he visited the cave of Palo, and collected animal bones (Boucher de Perthes 1864). No doubt he was aware of all the subsequent researches, and surely particularly those of Schmerling who found the Engis cranium in Belgium and published in the 1830s.

Boucher tells us also — and perhaps this is more important — of his theoretical development. For his idea, that humankind was born before the flood that gave the present shape to the land, he gives acknowledgement to his Society:

“Your counsel has not been lacking for me: I used it to a great degree when in our sessions of 1836–1840 I was developing this theory for you, as a complement to my book ‘De la Création’, adding that this fossil man and his products should be found in the diluvium, the sediments that would now be termed Tertiary.”

(Boucher de Perthes 1864: 2)

In treating Boucher as ‘father of prehistory’ many commentators have somewhat coyly left aside his literary achievements as something of an embarrassment. Let Boucher just take his place in his niche. But as we have seen, even Kant had some quite extraordinary ideas about planetary inhabitants, and in struggling with the biblical timescale Boucher de Perthes was hardly alone. His ‘Creation’ has cycles of rebirth and reincarnation, and is in modern parlance a bit ‘off the wall’, but it seems to have helped him towards a conclusion of major importance, in which he was far ahead of his time. Schmerling may have been inching in that direction, but even Lyell expresses a regret that he did not listen to Schmerling more. Boucher, however, did not give up. He went on and on until he was listened to. His local Society had not rejected his ideas (that might have been unwise), they just wanted the evidence. He gave the proof to them and the world.

CONCLUSION

The idea of Boucher de Perthes as the ‘father of prehistory’ was shaped by French scholars in the latter part of the 19th century. Already he was in the past, while de Mortillet, Lartet and others worked on in the present. His achievement, as Broca saw it, was that he stayed the course. Others found things, but they did not convince the world. Boucher was fortunate that the world became ripe for convincing, in two stages — the one driven by geologist-paleontologists was to provide the long time scale. The second, the Darwinian revolution, provided the
evolutionary dynamics. Boucher de Perthes did indeed stay the course — towards fifteen years without outside support, then another few with converts and supporters — and even then he had another ten years of life to enjoy his fame.

Academic enterprises are social, and the strength and weakness of his appears to have been that it was strongly local. Human networks can however branch out and interlink. The British geologists who feature largely in the story from our point of view are the ‘weak links’ which operate so strongly in modern network theory (Roberts 2009), and they made sure to get the story out.

ACKNOWLEDGEMENTS

I am grateful to Matt Pope, Francis Wenban-Smith and Rob Hosfield for thoughts and suggestions, and for a memorable celebration of the 150th anniversary of events in Abbeville, on the spot. There we were reminded by the stark rebuilding of central Abbeville that the Hotel de Cépy is alas no more, destroyed in the bombardment of 1940. Presumably the original portrait of Figure 1 was destroyed with it. It was preserved in an old post card (Cliché Girard), reproduced in the Colloquium Proceedings (1989/1997). It is pleasing to note that the Société d’Emulation d’Abbeville continues in good health.

ADDENDUM

To a surprising degree the times of Boucher de Perthes in the earlier part of the nineteenth century are almost still linked to us by living memory, and so retain an unhistorical freshness. When my parents came to their house, an elderly postman could tell of his grandfather, who had fought in the Napoleonic wars, and then became the first village constable (Peeler) presiding over bare-fist fights in the fields, where navvies, drawn from the canal and railway building would gather for a ‘summer holiday’ of crop harvesting. (Sir Robert Peel himself was yet another born in the same year as Boucher, 1788). Several colleagues, at least, trace ancestors active in the Napoleonic wars — in command of one of Nelson's ships, or in the Coldstream guards at Waterloo, or even in the Napoleonic home guard. These links drew out further ones from other colleagues: “I have two anecdotal links back to the Napoleonic era. I apparently had an ancestor who served on the Bellerophon and my German parentage comes from German soldiers stationed in Sussex during the time leading up to Waterloo. We like to think they were Prussian infantry fresh from the fight at La Hougomont”. And then: “My own maternal great-great-great-grandfather had as a sister the Duke of Wellington’s wife, and (as a consequence probably!) two brothers who fought as Wellington’s Generals in the Peninsular campaign before injury and death respectively. And on my paternal side a Customs Officer in Kent!” Another of the ancestors, Thomas Greatorex, represents these times very fully, because as a musician he knew almost everyone. He polished lenses with Herschel (another musician), stayed in the house of the Earl of Sandwich, Captain Cook’s patron, sang for the exiled Bonnie Prince Charlie in Rome, and conducted concerts for George III in London. Giving perspective on Boucher de Perthes, he was similarly involved in an almost crazy range of things, including scientific writing. At the very limits of oral tradition, we have 32 great-great-great-grandparents each, and the certainty that they were on this stage somewhere — indeed a five-generation link of oral tradition is common in clans around the world. Those colleagues with ancestry elsewhere in the world may well lack the written records, but have other traditions showing that 200 years is still quite a short time.

REFERENCES

Bosher, J.F. 1971. French Administration and public

Tylor, A. 1863. On the Discovery of Supposed Human Remains in the Tool-Bearing Drift of